洛谷P1962 斐波那契数列 题解 矩阵快速幂
题目链接:https://www.luogu.com.cn/problem/P1962
解题思路:
因为
\[\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} F_{i} \\ F_{i+1} \end{bmatrix} = \begin{bmatrix} F_{i+1} \\ F_{i+2} \end{bmatrix}
\]
所以
\[\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^{n-2} \times \begin{bmatrix} F_{1} \\ F_{2} \end{bmatrix} = \begin{bmatrix} F_{n-1} \\ F_{n} \end{bmatrix}
\]
示例程序:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 5;
const long long mod = 1e9 + 7;
struct Matrix {
int n, m;
long long a[maxn][maxn];
void init(int _n, int _m) {
n = _n;
m = _m;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
a[i][j] = 0;
}
Matrix operator * (const Matrix &b) const {
Matrix res;
res.init(n, b.m);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
for (int k = 1; k <= b.m; k++)
res.a[i][k] += a[i][j] * b.a[j][k],
res.a[i][k] %= mod;
return res;
}
Matrix operator ^ (long long k) const {
Matrix res, t;
res.init(n, n);
for (int i = 1; i <= n; i++)
res.a[i][i] = 1;
t.init(n, n);
memcpy(t.a, a, sizeof a);
for (; k; k >>= 1, t = t * t)
if (k & 1ll)
res = res * t;
return res;
}
} a, b;
long long n;
int main() {
cin >> n;
if (n <= 2) {
cout << 1 << endl;
return 0;
}
a.init(2, 2);
a.a[1][2] = 1;
a.a[2][1] = a.a[2][2] = 1;
a = a ^ (n-2);
b.init(2, 1);
b.a[1][1] = b.a[2][1] = 1;
a = a * b;
cout << a.a[2][1] << endl;
return 0;
}
浙公网安备 33010602011771号