AtCoder ABC423F - Loud Cicada 题解 容斥原理

题目大意:

\([1, Y]\) 范围内有多少个数是:\(A_1, A_2, \ldots, A_N\) 中恰好 \(K\) 个数的倍数。

解题思路:

容斥原理

思路完全来自 StelaYuri大佬的博客

示例程序:

#include <bits/stdc++.h>
using namespace std;

void write(__int128 a) {
    if (a / 10)
        write(a / 10);
    cout << (int) (a % 10);
}
__int128 gcd(__int128 a, __int128 b) {
    if (!b) return a;
    return gcd(b, a%b);
}
__int128 lcm(__int128 a, __int128 b) {
    return a / gcd(a, b) * b;
}

int n, m;
long long Y, a[22];

__int128 C[22][22];

void init() {
    for (int i = 0; i <= 20; i++) {
        C[i][0] = C[i][i] = 1;
        for (int j = 1; j < i; j++)
            C[i][j] = C[i-1][j-1] + C[i-1][j];
    }
}

int main() {
    init();
    cin >> n >> m >> Y;
    for (int i = 0; i < n; i++)
        cin >> a[i];
    __int128 ans = 0;
    for (int s = 1; s < (1<<n); s++) {
        int k = __builtin_popcount(s);
        if (k < m)
            continue;
        __int128 D = 1;
        for (int i = 0; i < n; i++) {
            if ((s >> i) & 1) {
                D = lcm(D, a[i]);
                if (D > Y)
                    break;
            }
        }
        if (D > Y) continue;
        __int128 tmp = C[k][m] * (Y / D);
        if ((k - m) % 2)
            ans -= tmp;
        else
            ans += tmp;
    }
    write(ans);
    return 0;
}
posted @ 2025-09-19 21:13  quanjun  阅读(15)  评论(0)    收藏  举报