java数组排序算法

算法总结:

参数说明:

  稳定性:相同数组中变量a与b如果值相等排序时,a原本在b前面,出现a在b后面的现象。

  时间复杂度: 一个算法执行所耗费的时间。

  空间复杂度:运行完一个程序(函数)所需内存的大小。

  n: 数据规模(数组数据个数)

  k: “桶”的个数

  In-place(内排序): 占用常数内存,不占用额外内存(所有排序操作都在内存中完成) 

  Out-place(外排序): 占用额外内存(由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行)

排序算法案例:

①冒泡排序

  本质:通过for循环 利用两两比较的方式依次找到相对大值放在右边,实现每次循环后,将未排序的数组部分最大值放在右边

冒泡排序图解

代码说明:

public static void sort(int[] arr) {
        //外层循环控制比较的次数  arr[arr.leng-1]后面没有比较的数据 比较数[0,arr.leng-1-1]
        for (int i = 0; i < arr.length-1; i++){
            //内层循环控制到达位置   被比较数据[1,arr.leng-1-i(已经比较过的次数)]
            for (int j = 1; j < arr.length - 1 - i; j++){
                if (arr[j ] < arr[j]) {
                    int temp = arr[j ];
                    arr[j] = arr[j];
                    arr[j] = temp;
                }
                }
            }
    }

②选择排序

  本质:每次循环,找到该次循环的最小值,记录索引排序

代码说明:
public static void sort(int[] array) {
        //外层循环控制循环次数
        for (int i = 0; i < array.length; i++) {
            int minIndex = i;
            //内层循环 找到循环时的最小值得索引
            for (int j = i; j < array.length; j++) {
                if (array[j] < array[minIndex]) //找到最小的数
                    minIndex = j; //将最小数的索引保存
            }
            int temp = array[minIndex];
            array[minIndex] = array[i];
            array[i] = temp;
        }
    }

③插入排序:

  本质:通过循环依次从右到左依次判断,进入插入对应位置,已形成循环次数对应索引左边的有序与右边的无序数据

代码说明:

 public static void sort(int[] array) {
         int current;
         //外层循环控制循环次数
          for (int i = 0; i < array.length - 1; i++) {
                current = array[i + 1];
                int preIndex = i;
                //内层循环控制索引数据右移或插入
                while (preIndex >= 0 && current < array[preIndex]) {
                    array[preIndex + 1] = array[preIndex];
                    preIndex--;
                }
                array[preIndex + 1] = current;
            }
        }

④希尔排序:

  希尔排序是把记录按下表的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

具体算法描述:

  选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;

  按增量序列个数k,对序列进行k 趟排序;

  每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

 

代码说明:

public static void sort(int[] array) {
  int len = array.length;
  int temp, gap = len / 2;
  while (gap > 0) {
    for (int i = gap; i < len; i++) {
      temp = array[i];
      int preIndex = i - gap;
      while (preIndex >= 0 && array[preIndex] > temp) {
        array[preIndex + gap] = array[preIndex];
        preIndex -= gap;
      }
      array[preIndex + gap] = temp;
    }
    gap /= 2;
  }
}

⑤归并排序

  算法描述

    把长度为n的输入序列分成两个长度为n/2的子序列;

    对这两个子序列分别采用归并排序;

    将两个排序好的子序列合并成一个最终的排序序列。

代码说明:   补充:暂时未发布该随笔引用数据参数传递与基本数据参数传递

/*** 归并排序 由于归并排序并不是在原有数组进行操作,应该返回新数组地址*/
public static int[] MergeSort(int[] array) {
  if (array.length < 2) 
    return array;
  int mid = array.length / 2;
  nt[] left = java.util.Arrays.copyOfRange(array, 0, mid);
  int[] right = java.util.Arrays.copyOfRange(array, mid, array.length);
    return merge(MergeSort(left), MergeSort(right));
}
/*** 归并排序——将两段排序好的数组结合成一个排序数组 */
public static int[] merge(int[] left, int[] right) {
  int[] result = new int[left.length + right.length];
  for (int index = 0, i = 0, j = 0; index < result.length; index++) {
    if (i >= left.length)
      result[index] = right[j++];
    else if (j >= right.length)
      result[index] = left[i++];
    else if (left[i] > right[j])
      result[index] = right[j++];
    else
      result[index] = left[i++];
  }
  return result;
}

 

⑥快速排序(Quick Sort)

算法描述:

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

代码说明

复制代码
  /*** 快速排序方法*/
    public static int[] QuickSort(int[] array, int start, int end) {
        if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
        int smallIndex = partition(array, start, end);
        if (smallIndex > start)
            QuickSort(array, start, smallIndex - 1);
        if (smallIndex < end)
            QuickSort(array, smallIndex + 1, end);
        return array;
    }
    /*** 快速排序算法——partition*/
    public static int partition(int[] array, int start, int end) {
        int pivot = (int) (start + Math.random() * (end - start + 1));
        int smallIndex = start - 1;
        swap(array, pivot, end);
        for (int i = start; i <= end; i++)
            if (array[i] <= array[end]) {
                smallIndex++;
                if (i > smallIndex)
                    swap(array, i, smallIndex);
            }
        return smallIndex;
    }

    /**交换数组内两个元素*/
    public static void swap(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }
复制代码

⑦堆排序(Heap Sort)

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

算法描述

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

代码说明

注意:这里用到了完全二叉树的部分性质:详情见《数据结构二叉树知识点总结》

复制代码
//声明全局变量,用于记录数组array的长度;
static int len;
    /*** 堆排序算法*/
    public static int[] HeapSort(int[] array) {
        len = array.length;
        if (len < 1) return array;
        //1.构建一个最大堆
        buildMaxHeap(array);
        //2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆
        while (len > 0) {
            swap(array, 0, len - 1);
            len--;
            adjustHeap(array, 0);
        }
        return array;
    }
    /**
     * 建立最大堆
     *
     * @param array
     */
    public static void buildMaxHeap(int[] array) {
        //从最后一个非叶子节点开始向上构造最大堆
        for (int i = (len/2 - 1); i >= 0; i--) { //感谢 @让我发会呆 网友的提醒,此处应该为 i = (len/2 - 1) 
            adjustHeap(array, i);
        }
    }
    /*** 调整使之成为最大堆*/
    public static void adjustHeap(int[] array, int i) {
        int maxIndex = i;
        //如果有左子树,且左子树大于父节点,则将最大指针指向左子树
        if (i * 2 < len && array[i * 2] > array[maxIndex])
            maxIndex = i * 2;
        //如果有右子树,且右子树大于父节点,则将最大指针指向右子树
        if (i * 2 + 1 < len && array[i * 2 + 1] > array[maxIndex])
            maxIndex = i * 2 + 1;
        //如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。
        if (maxIndex != i) {
            swap(array, maxIndex, i);
            adjustHeap(array, maxIndex);
        }
    }
复制代码
 

⑧计数排序(CountingSort)

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

计数排序(Counting sort)是一种稳定的排序算法。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A中的元素排到正确的位置。它只能对整数进行排序。

算法描述--每个桶只存储单一键值

  • 找出待排序的数组中最大和最小的元素;
  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

代码实现

复制代码
/*** 计数排序 */
    public static int[] CountingSort(int[] array) {
        if (array.length == 0) return array;
        int bias, min = array[0], max = array[0];
        for (int i = 1; i < array.length; i++) {
            if (array[i] > max)
                max = array[i];
            if (array[i] < min)
                min = array[i];
        }
        bias = 0 - min;
        int[] bucket = new int[max - min + 1];
        Arrays.fill(bucket, 0);
        for (int i = 0; i < array.length; i++) {
            bucket[array[i] + bias]++;
        }
        int index = 0, i = 0;
        while (index < array.length) {
            if (bucket[i] != 0) {
                array[index] = i - bias;
                bucket[i]--;
                index++;
            } else
                i++;
        }
        return array;
    }
复制代码

⑨桶排序(BucketSort)

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排

 算法描述--每个桶存储一定范围的数值

  • 人为设置一个BucketSize,作为每个桶所能放置多少个不同数值(例如当BucketSize==5时,该桶可以存放{1,2,3,4,5}这几种数字,但是容量不限,即可以存放100个3);
  • 遍历输入数据,并且把数据一个一个放到对应的桶里去;
  • 对每个不是空的桶进行排序,可以使用其它排序方法,也可以递归使用桶排序;
  • 从不是空的桶里把排好序的数据拼接起来。 

注意,如果递归使用桶排序为各个桶排序,则当桶数量为1时要手动减小BucketSize增加下一循环桶的数量,否则会陷入死循环,导致内存溢出。

代码说明

复制代码
    /*** 桶排序*/
    public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) {
        if (array == null || array.size() < 2)
            return array;
        int max = array.get(0), min = array.get(0);
        // 找到最大值最小值
        for (int i = 0; i < array.size(); i++) {
            if (array.get(i) > max)
                max = array.get(i);
            if (array.get(i) < min)
                min = array.get(i);
        }
        int bucketCount = (max - min) / bucketSize + 1;
        ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount);
        ArrayList<Integer> resultArr = new ArrayList<>();
        for (int i = 0; i < bucketCount; i++) {
            bucketArr.add(new ArrayList<Integer>());
        }
        for (int i = 0; i < array.size(); i++) {
            bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i));
        }
        for (int i = 0; i < bucketCount; i++) {
            if (bucketSize == 1) { // 如果带排序数组中有重复数字时  
                for (int j = 0; j < bucketArr.get(i).size(); j++)
                    resultArr.add(bucketArr.get(i).get(j));
            } else {
                if (bucketCount == 1)
                    bucketSize--;
                ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize);
                for (int j = 0; j < temp.size(); j++)
                    resultArr.add(temp.get(j));
            }
        }
        return resultArr;
    }
复制代码

⑩基数排序(RadixSort)

基数排序也是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以是稳定的。

算法描述 --根据键值的每位数字来分配桶

  • 取得数组中的最大数,并取得位数;
  • arr为原始数组,从最低位开始取每个位组成radix数组;
  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);

 

 

代码实现

复制代码
  /*** 基数排序/
    public static int[] RadixSort(int[] array) {
        if (array == null || array.length < 2)
            return array;
        // 1.先算出最大数的位数;
        int max = array[0];
        for (int i = 1; i < array.length; i++) {
            max = Math.max(max, array[i]);
        }
        int maxDigit = 0;
        while (max != 0) {
            max /= 10;
            maxDigit++;
        }
        int mod = 10, div = 1;
        ArrayList<ArrayList<Integer>> bucketList = new ArrayList<ArrayList<Integer>>();
        for (int i = 0; i < 10; i++)
            bucketList.add(new ArrayList<Integer>());
        for (int i = 0; i < maxDigit; i++, mod *= 10, div *= 10) {
            for (int j = 0; j < array.length; j++) {
                int num = (array[j] % mod) / div;
                bucketList.get(num).add(array[j]);
            }
            int index = 0;
            for (int j = 0; j < bucketList.size(); j++) {
                for (int k = 0; k < bucketList.get(j).size(); k++)
                    array[index++] = bucketList.get(j).get(k);
                bucketList.get(j).clear();
            }
        }
        return array;
    }
复制代码

 

参考链接:

  https://www.cnblogs.com/guoyaohua/p/8600214.html;

  https://www.cnblogs.com/morethink/p/8419151.html

 

posted @ 2019-03-10 17:39  等价交换原则  阅读(1541)  评论(0编辑  收藏  举报