科学计算复习

Scientific Computing Review Outline

Floating-Point Number System

Problem 1.3

Let \(x_f\) and \(y_f\) be adjacent floating-point numbers. You can assume they are positive and normal floats.
What is the minimum possible distance between \(x_f\) and \(y_f\)?Maximum possible distance?

Solving A Nonlinear Equation

Key points: Newton's Method,Secant Method. Bisection Method is simple.

Problem 2.24

This problem considers solving \(f(x)=0\),where $$f(x)=x^3-3x-1.$$
1.Using Newton's method, take \(x_0 =2\) and calculate \(x_1\).After this,calculate \(x_2\).
2.Using Secant method, take \(x_0 =2,x_1=1.9\) and calculate \(x_1\).

Others:Order of Convergence

Matrix Equations

Key points:Doolittle factorization,Crout factorization,Cholesky factorization

Problem 3.5

Consider the matrix

\[A=\begin{pmatrix} 3 & -1& -1 \\ -1 & 3&- 2\\ -1&-2 &5 \end{pmatrix}\]

1. Find \(||A||_{1},A^{-1}, \kappa_{\infty}(A)\).
2. Find the Doolittle factorization, Crout factorization of A.
3. Using a Doolittle factorization, solve \(AX=b,b=(-1,1,-4)^{T}\).
4. Find the Cholesky factorization.

Eigenvalue Problems

Key points: Power Method,QR Factorization,SVD

Problem 4.3

The symmetric matrix

\[A=\begin{pmatrix} 11 & 7& -4\\ 7 & 11&4\\ -4&4 &-10 \end{pmatrix}\]

has eigenvectors \(x_1 =(1,1,0)^{T}, x_2 =(1,0,2)^{T},x_3 =(0,−2,1)^{T}\).
1. What are the corresponding eigenvalues?
2. Assuming the starting vector \(y_0=(1,1,1)^{T}\),what eigenvalue will the power method converge to and what will be the resulting eigenvector?
3. Assuming \(C_0=A\),find \(C_1\) when using the QR method.
4. When using the QR method, what matrix does the \(C_k\) matrices converge to?

Problem SVD

\[A=\begin{pmatrix} 1 & 2\\ 0 & 1\\ 1&0 \end{pmatrix}\]

1. Find a SVD for \(A\).
2. Find a SVD for \(-3A\).
3. Find \(||A||_2\).

Interpolation

Key points: Lagrange,Cubic Spline
页面提取_页面_1

Problem 5.1

In this problem the data are: \((x_1,y_1)=(0,0), (x_2,y_2)=(1,1)\),and \((x_3,y_3)=(2,3)\).
1.Find the global interpolation polynomial that fits these data.
(Do not use method of undetermined coefficients.)
2.Find the natural cubic spline that fits these data.

Numerical Integration

Key points:Midpoint, Trapezoid, Simpson,Hermite
页面提取_页面_2

Problem 6.2

This problem concerns using numerical methods to calculate the integral

\[I = \int_{-1}^{1} e^{-2x} \,\mathrm{d}x. \]

1. Using the composite trapezoidal rule, and 4 subintervals, find an approximate value for the integral. What is the error?
2. Using the composite Simpson's rule, and 4 subintervals, find an approximate value for the integral. What is the error?
3. Using the composite Hermite rule, and 4 subintervals, find an approximate value for the integral. What is the error?
4. Using the composite trapezoidal rule, how small does the step size \(h\) have to be to guarantee that the numerical error is less than \(10^{-6}\) ?
5. Using the composite Simpson's rule, how small does the step size \(h\) have to be to guarantee that the numerical error is less than \(10^{-6}\)?

Numerical differentiation

Determine the truncation error expression of the numerical differentiation formula.

\[f'(x_0)\approx \frac{1}{2h}[4f(x_0+h)-3f(x_0)-f(x_0+2h)]. \]

Initial Value Problems

Key points:Euler, Backward Euler, Classic Runge-Kutta
页面提取_页面_3

Optimization

Key points:Linear Least Squares,SDM,CGM

Review Problems

页面提取自-ElegantBook_页面_1

页面提取自-ElegantBook_页面_2

页面提取自-elegant

页面提取自-elegant

posted @ 2025-11-16 17:43  Chihiro2026  阅读(16)  评论(0)    收藏  举报