Linux内存管理学习1 —— head.S中的段页表的建立

作者

彭东林

pengdonglin137@163.com

 

平台

TQ2440

Qemu+vexpress-ca9

Linux-4.10.17

 

概述

   在Linux自解压完毕后,开始执行arch/arm/kernel/head.S,然后跳转到init/main.c中的start_kernel开始执行。在head.S中为了便利Linux内核启动,会建立临时的段页表。这里以TQ2440和vexpress-ca9为例,其中TQ2440使用的SoC是S3C2440,ARM核心是ARM920T,指令集是ARMv4T,而vexpress-ca9是ARM核心是Cortex-A9,指令集是ARMv7。为了便于理解,在分析的时候主要以2440为主,只是顺便说一下ARMv7,因为这两个大同小异。

下面是代码分析时的一些条件

1、以设备树的方式启动Linux内核

2、下面是一些宏和变量的说明:

 

说明 TQ2440(ARM920T) vxpress(Cortex-A9)
CONFIG_ARM_LPAE   No No
TEXT_OFFSET 内核代码段相对于内核地址空间的偏移量 0x8000 0x8000
PAGE_OFFSET 内核地址空间的偏移量 0xC000_0000 0xC000_0000
 KERNEL_RAM_VADDR =PAGE_OFFSET+TEXT_OFFSET 0xC000_8000
0xC000_8000
PG_DIR_SIZE 一级页表的大小 0x4000 (16KB) 0x4000 (16KB)
PMD_ORDER 一级页表的每个页表项占用的字节(2^(PMD_ORDER)) 2^2 = 4 2^2 = 4
swapper_pg_dir

一级页表的虚拟起始地址

KERNEL_RAM_VADDR - PG_DIR_SIZE

0xC000_4000 0xC000_4000
CONFIG_ARM_VIRT_EXT   No Yes
CONFIG_XIP_KERNEL   No No
CONFIG_SMP   No Yes
CONFIG_SMP_ON_UP   No Yes
CONFIG_ARM_PATCH_PHYS_VIRT   Yes Yes
CONFIG_CPU_32v4T  ARM指令集 Yes No
CONFIG_CPU_32v7  ARM指令集 No Yes
CONFIG_CPU_V7M  ARM指令集 No No
__LINUX_ARM_ARCH__ ARM指令集 4 7
CONFIG_CPU_DCACHE_WRITETHROUGH   No No

 

 3、地址空间:

对于TQ2440,板子上面有64MB的物理内存,所以物理内存地址范围是: 0x3000_0000 ~ 0x3400_0000

对于express板子,分配了1GB的物理内存,所以物理内存地址范围是: 0x6000_0000 ~ 0xA000_0000

 

正文

在进入head.S是,MMU和D-Cache是关闭的,r0是0,r1的值任意,r2的值是dtb镜像在内存中的物理起始地址。

下面是对head.S精简后的代码:

 1 ENTRY(stext)
 2 
 3 #ifdef CONFIG_ARM_VIRT_EXT
 4     bl    __hyp_stub_install
 5 #endif
 6     @ ensure svc mode and all interrupts masked
 7     safe_svcmode_maskall r9
 8 
 9     mrc    p15, 0, r9, c0, c0        @ get processor id
10     bl    __lookup_processor_type        @ r5=procinfo r9=cpuid
11     movs    r10, r5                @ invalid processor (r5=0)?
12     beq    __error_p            @ yes, error 'p'
13 
14     adr    r3, 2f
15     ldmia    r3, {r4, r8}
16     sub    r4, r3, r4            @ (PHYS_OFFSET - PAGE_OFFSET)
17     add    r8, r8, r4            @ PHYS_OFFSET
18 
19     /*
20      * r1 = machine no, r2 = atags or dtb,
21      * r8 = phys_offset, r9 = cpuid, r10 = procinfo
22      */
23     bl    __vet_atags
24 #ifdef CONFIG_SMP_ON_UP
25     bl    __fixup_smp
26 #endif
27 
28     bl    __fixup_pv_table
29 
30     bl    __create_page_tables
31 
32     /*
33      * The following calls CPU specific code in a position independent
34      * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
35      * xxx_proc_info structure selected by __lookup_processor_type
36      * above.
37      *
38      * The processor init function will be called with:
39      *  r1 - machine type
40      *  r2 - boot data (atags/dt) pointer
41      *  r4 - translation table base (low word)
42      *  r5 - translation table base (high word, if LPAE)
43      *  r8 - translation table base 1 (pfn if LPAE)
44      *  r9 - cpuid
45      *  r13 - virtual address for __enable_mmu -> __turn_mmu_on
46      *
47      * On return, the CPU will be ready for the MMU to be turned on,
48      * r0 will hold the CPU control register value, r1, r2, r4, and
49      * r9 will be preserved.  r5 will also be preserved if LPAE.
50      */
51     ldr    r13, =__mmap_switched        @ address to jump to after
52                         @ mmu has been enabled
53     badr    lr, 1f                @ return (PIC) address
54 
55     mov    r8, r4                @ set TTBR1 to swapper_pg_dir
56 
57     ldr    r12, [r10, #PROCINFO_INITFUNC]
58     add    r12, r12, r10
59     ret    r12
60 1:    b    __enable_mmu
61 ENDPROC(stext)
62     .ltorg
63 2:    .long    .
64     .long    PAGE_OFFSET

下面开始分析上面的代码:

1、第4行的__hyp_stub_install在vexpress上会执行,而在2440上不执行,这里暂时忽略

2、第7行的 safe_svcmode_maskall r9 确保处理器进入SVC模式,同时关闭IRQ和FIQ中断。对于2440,做了如下操作:

msr  cpsr_c, #(PSR_F_BIT | PSR_I_BIT | SVC_MODE)

3、第9行 mrc p15, 0, r9, c0, c0 用于获得processor id。

对于2440, CP15的C0的值是0x4112920x,参考手册 ARM920T Technical Reference Manual 的2.3节 CP15 register map summary

对于vexpress,CP15的C0的值是0x414FC091,参考手册 ARM® Cortex®‑A9 Technical Reference Manual 的 4. System Control

 

比如对于2440,执行完第3行代码后,r9的值就是0x4112920x,而对于vexpress,r9的值是0x414FC091。

4、第10到12行,遍历kernel的".proc.info.init"段,找到与该处理器ID匹配的proc_info_list结构体,如果找到的话,r5寄存器存放的是该proc_info_list的物理地址,第11行将该地址存放到r10中,如果没有找到的话,

寄存器r5值是0,执行完第11行的movs代码后,第12行的beq就会成立,跳转到__error_p处,如果配置了CONFIG_DEBUG_LL,就会打印相应的错误信息:

Error: unrecognized/unsupported processor variant (0xXXXXXXX)

上面括号中是实际从CP15的C0里读到的值。

下面我们看看对于2440和vexpress这两个板子,与之匹配的proc.info.init字段都分别是什么?

对于2440,该部分定义在arch/arm/mm/proc-arm920.S中:

 1     define_processor_functions arm920, dabort=v4t_early_abort, pabort=legacy_pabort, suspend=1
 2 
 3     .section ".rodata"
 4 
 5     string    cpu_arch_name, "armv4t"
 6     string    cpu_elf_name, "v4"
 7     string    cpu_arm920_name, "ARM920T"
 8 
 9     .align
10 
11     .section ".proc.info.init", #alloc
12 
13     .type    __arm920_proc_info,#object
14 __arm920_proc_info:
15     .long    0x41009200
16     .long    0xff00fff0
17     .long   PMD_TYPE_SECT | \
18         PMD_SECT_BUFFERABLE | \
19         PMD_SECT_CACHEABLE | \
20         PMD_BIT4 | \
21         PMD_SECT_AP_WRITE | \
22         PMD_SECT_AP_READ
23     .long   PMD_TYPE_SECT | \
24         PMD_BIT4 | \
25         PMD_SECT_AP_WRITE | \
26         PMD_SECT_AP_READ
27     initfn    __arm920_setup, __arm920_proc_info
28     .long    cpu_arch_name
29     .long    cpu_elf_name
30     .long    HWCAP_SWP | HWCAP_HALF | HWCAP_THUMB
31     .long    cpu_arm920_name
32     .long    arm920_processor_functions
33     .long    v4wbi_tlb_fns
34     .long    v4wb_user_fns
35     .long    arm920_cache_fns
36     .size    __arm920_proc_info, . - __arm920_proc_info

第1行的define_processor_functions是一个宏,定义在arch/arm/mm/proc-macros.S中,根据传入的参数展开后如下:

    .type    arm920_processor_functions, #object
    .align 2
ENTRY(arm920_processor_functions)
    .word    \dabort
    .word    \pabort
    .word    cpu_arm920_proc_init
    .word    cpu_arm920_proc_fin
    .word    cpu_arm920_reset
    .word    cpu_arm920_do_idle
    .word    cpu_arm920_dcache_clean_area
    .word    cpu_arm920_switch_mm
    .word    cpu_arm920_set_pte_ext
    .word    cpu_arm920_suspend_size
    .word    cpu_arm920_do_suspend
    .word    cpu_arm920_do_resume
    .size    arm920_processor_functions, . - arm920_processor_functions

第4到7行只读,存放了一下字符串,将来在启动阶段(start_kernel --> setup_arch --> setup_processor)会被打印出来

    pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
        cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
        proc_arch[cpu_architecture()], get_cr());

如:

[    0.000000] CPU: ARM920T [41129200] revision 0 (ARMv4T), cr=c000717f

第15到35行的数据将来可以通过一个struct proc_info_list进行访问:

struct proc_info_list {
    unsigned int        cpu_val;
    unsigned int        cpu_mask;
    unsigned long        __cpu_mm_mmu_flags;    /* used by head.S */
    unsigned long        __cpu_io_mmu_flags;    /* used by head.S */
    unsigned long        __cpu_flush;        /* used by head.S */
    const char        *arch_name;
    const char        *elf_name;
    unsigned int        elf_hwcap;
    const char        *cpu_name;
    struct processor    *proc;
    struct cpu_tlb_fns    *tlb;
    struct cpu_user_fns    *user;
    struct cpu_cache_fns    *cache;
};

第27行 initfn __arm920_setup, __arm920_proc_info 展开后是: __arm920_setup -  __arm920_proc_info,也就是这里存放了一个这两个符号的地址偏差,将来就可以根据__arm920_proc_info轻松地找到__arm920_setup

第33和35行的分析类似第1行,都是宏展开后生成的,直接在代码里搜索不到。

对于v4wbi_tlb_fns 定义在arch/arm/mm/tlb-v4wbi.S中:  define_tlb_functions v4wbi, v4wbi_tlb_flags ,展开如下:

    .type    v4wbi_tlb_fns, #object
ENTRY(v4wbi_tlb_fns)
    .long    v4wbi_flush_user_tlb_range
    .long    v4wbi_flush_kern_tlb_range
    .long    v4wbi_tlb_flags
    .size    v4wbi_tlb_fns, . - v4wbi_tlb_fns

对于arm920_cache_fns, 定义在arch/arm/mm/proc-arm920.S中 define_cache_functions arm920 展开后:

    .align 2
    .type    arm920_cache_fns, #object
ENTRY(arm920_cache_fns)
    .long    arm920_flush_icache_all
    .long    arm920_flush_kern_cache_all
    .long    arm920_flush_kern_cache_louis
    .long    arm920_flush_user_cache_all
    .long    arm920_flush_user_cache_range
    .long    arm920_coherent_kern_range
    .long    arm920_coherent_user_range
    .long    arm920_flush_kern_dcache_area
    .long    arm920_dma_map_area
    .long    arm920_dma_unmap_area
    .long    arm920_dma_flush_range
    .size    arm920_cache_fns, . - arm920_cache_fns

第34行,对于v4wb_user_fns 定义在arch/arm/mm/copypage-v4wb.c中:

struct cpu_user_fns v4wb_user_fns __initdata = {
    .cpu_clear_user_highpage = v4wb_clear_user_highpage,
    .cpu_copy_user_highpage    = v4wb_copy_user_highpage,
};

如果将vmlinux反汇编,可以看到__arm920_proc_info这段的内容如下:

c06adf80 <__proc_info_begin>:
c06adf80:       41009200    #cpu_val
c06adf84:       ff00fff0    #cpu_mask    
c06adf88:       00000c1e    #__cpu_mm_mmu_flags    
c06adf8c:       00000c12    #__cpu_io_mmu_flags     
c06adf90:       ff968a3c    #__cpu_flush  
c06adf94:       c04ed874    #arch_name
c06adf98:       c04ed87b    #elf_name
c06adf9c:       00000007    #elf_hwcap
c06adfa0:       c04ed87e    #cpu_name
c06adfa4:       c06b4040    #proc
c06adfa8:       c06b4034    #tlb
c06adfac:       c06b402c    #user
c06adfb0:       c00168c0    #cache

对于vexpress,对应的是proc.info.init定义在arch/arm/mm/proc-v7.S中,只留下需要关注的部分:

    define_processor_functions ca9mp, dabort=v7_early_abort, pabort=v7_pabort, suspend=1

    .section ".rodata"

    string    cpu_arch_name, "armv7"
    string    cpu_elf_name, "v7"
    .align

    .section ".proc.info.init", #alloc

    /*
     * Standard v7 proc info content
     */
.macro __v7_proc name, initfunc, mm_mmuflags = 0, io_mmuflags = 0, hwcaps = 0, proc_fns = v7_processor_functions
    ALT_SMP(.long    PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | \
            PMD_SECT_AF | PMD_FLAGS_SMP | \mm_mmuflags)
    ALT_UP(.long    PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | \
            PMD_SECT_AF | PMD_FLAGS_UP | \mm_mmuflags)
    .long    PMD_TYPE_SECT | PMD_SECT_AP_WRITE | \
        PMD_SECT_AP_READ | PMD_SECT_AF | \io_mmuflags
    initfn    \initfunc, \name
    .long    cpu_arch_name
    .long    cpu_elf_name
    .long    HWCAP_SWP | HWCAP_HALF | HWCAP_THUMB | HWCAP_FAST_MULT | \
        HWCAP_EDSP | HWCAP_TLS | \hwcaps
    .long    cpu_v7_name
    .long    \proc_fns
    .long    v7wbi_tlb_fns
    .long    v6_user_fns
    .long    v7_cache_fns
.endm

    /*
     * ARM Ltd. Cortex A9 processor.
     */
    .type   __v7_ca9mp_proc_info, #object
__v7_ca9mp_proc_info:
    .long    0x410fc090
    .long    0xff0ffff0
    __v7_proc __v7_ca9mp_proc_info, __v7_ca9mp_setup, proc_fns = ca9mp_processor_functions
    .size    __v7_ca9mp_proc_info, . - __v7_ca9mp_proc_info

进一步展开后是:

 1     string  cpu_v7_name, "ARMv7 Processor"    
 2     define_processor_functions ca9mp, dabort=v7_early_abort, pabort=v7_pabort, suspend=1
 3 
 4     .section ".rodata"
 5 
 6     string    cpu_arch_name, "armv7"
 7     string    cpu_elf_name, "v7"
 8     .align
 9 
10     .section ".proc.info.init", #alloc
11 
12     /*
13      * ARM Ltd. Cortex A9 processor.
14      */
15     .type   __v7_ca9mp_proc_info, #object
16 __v7_ca9mp_proc_info:
17     .long    0x410fc090
18     .long    0xff0ffff0
19     ALT_SMP(.long    PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | \
20             PMD_SECT_AF | PMD_FLAGS_SMP)
21     ALT_UP(.long    PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | \
22             PMD_SECT_AF | PMD_FLAGS_UP)
23     .long    PMD_TYPE_SECT | PMD_SECT_AP_WRITE | \
24         PMD_SECT_AP_READ | PMD_SECT_AF
25     initfn    __v7_ca9mp_setup, __v7_ca9mp_proc_info
26     .long    cpu_arch_name
27     .long    cpu_elf_name
28     .long    HWCAP_SWP | HWCAP_HALF | HWCAP_THUMB | HWCAP_FAST_MULT | \
29         HWCAP_EDSP | HWCAP_TLS
30     .long    cpu_v7_name
31     .long    ca9mp_processor_functions
32     .long    v7wbi_tlb_fns
33     .long    v6_user_fns
34     .long    v7_cache_fns
35     .size    __v7_ca9mp_proc_info, . - __v7_ca9mp_proc_info

跟2440一样,其中的部分标号的定义如下:

ca9mp_processor_functions:  定义在arch/arm/mm/proc-v7.S中 define_processor_functions ca9mp, dabort=v7_early_abort, pabort=v7_pabort, suspend=1

    .type    ca9mp_processor_functions, #object
    .align 2
ENTRY(ca9mp_processor_functions)
    .word    v7_early_abort
    .word    v7_pabort
    .word    cpu_ca9mp_proc_init
    .word    cpu_ca9mp_proc_fin
    .word    cpu_ca9mp_reset
    .word    cpu_ca9mp_do_idle
    .word    cpu_ca9mp_dcache_clean_area
    .word    cpu_ca9mp_switch_mm
    .word    cpu_ca9mp_set_pte_ext
    .word    cpu_ca9mp_suspend_size
    .word    cpu_ca9mp_do_suspend
    .word    cpu_ca9mp_do_resume
    .size    ca9mp_processor_functions, . - ca9mp_processor_functions

v7wbi_tlb_fns:定义在arch/arm/mm/tlb-v7.S中 define_tlb_functions v7wbi, v7wbi_tlb_flags_up, flags_smp=v7wbi_tlb_flags_smp ,展开如下:

ENTRY(v7wbi_tlb_fns)
    .long    v7wbi_flush_user_tlb_range
    .long    v7wbi_flush_kern_tlb_range
    ALT_SMP(.long    flags_smp=v7wbi_tlb_flags_smp )
    ALT_UP(.long    v7wbi_tlb_flags_up )
    .size    v7wbi_tlb_fns, . - v7wbi_tlb_fns

v6_user_fns:定义在arch/arm/mm/copypage-v6.c中:

struct cpu_user_fns v6_user_fns __initdata = {
    .cpu_clear_user_highpage = v6_clear_user_highpage_nonaliasing,
    .cpu_copy_user_highpage    = v6_copy_user_highpage_nonaliasing,
};

v7_cache_fns:定义在arch/arm/mm/cache-v7.S中 define_cache_functions v7 ,展开如下:

    .align 2
    .type    v7_cache_fns, #object
ENTRY(v7_cache_fns)
    .long    v7_flush_icache_all
    .long    v7_flush_kern_cache_all
    .long    v7_flush_kern_cache_louis
    .long    v7_flush_user_cache_all
    .long    v7_flush_user_cache_range
    .long    v7_coherent_kern_range
    .long    v7_coherent_user_range
    .long    v7_flush_kern_dcache_area
    .long    v7_dma_map_area
    .long    v7_dma_unmap_area
    .long    v7_dma_flush_range
    .size    v7_cache_fns, . - v7_cache_fns

对vmlinux反汇编后,可以看到__v7_ca9mp_proc_info部分的数据:

c06ee5fc <__v7_ca9mp_proc_info>:
c06ee5fc:       410fc090        #cpu_val
c06ee600:       ff0ffff0        #cpu_mask
c06ee604:       00011c0e        #__cpu_mm_mmu_flags
c06ee608:       00000c02        #__cpu_io_mmu_flags
c06ee60c:       ffa2e260        #__cpu_flush
c06ee610:       c0701b64        #arch_name
c06ee614:       c0701b6a        #elf_name
c06ee618:       00008097        #elf_hwcap
c06ee61c:       c011c780        #cpu_name
c06ee620:       c0958094        #proc
c06ee624:       c09081dc        #tlb
c06ee628:       c095802c        #user
c06ee62c:       c0958000        #cache

 

 

回到head.S继续分析,上面说完proc.info.init段的内容后,下面分析__lookup_processor_type:

 1 __lookup_processor_type:
 2     adr    r3, __lookup_processor_type_data
 3     ldmia    r3, {r4 - r6}
 4     sub    r3, r3, r4            @ get offset between virt&phys
 5     add    r5, r5, r3            @ convert virt addresses to
 6     add    r6, r6, r3            @ physical address space
 7 1:    ldmia    r5, {r3, r4}            @ value, mask
 8     and    r4, r4, r9            @ mask wanted bits
 9     teq    r3, r4
10     beq    2f
11     add    r5, r5, #PROC_INFO_SZ        @ sizeof(proc_info_list)
12     cmp    r5, r6
13     blo    1b
14     mov    r5, #0                @ unknown processor
15 2:    ret    lr
16 ENDPROC(__lookup_processor_type)
17 
18 /*
19  * Look in <asm/procinfo.h> for information about the __proc_info structure.
20  */
21     .align    2
22     .type    __lookup_processor_type_data, %object
23 __lookup_processor_type_data:
24     .long    .
25     .long    __proc_info_begin
26     .long    __proc_info_end
27     .size    __lookup_processor_type_data, . - __lookup_processor_type_data

由于还没有开启MMU,所以虚拟地址就是物理地址,但是由于kernel代码段的链接地址是从0xC0008000开始,而对于2440来说,物理内容的范围是0x3000_0000到0x3400_0000,所以如果直接用虚拟地址访问的话,程序一定会跑飞了。

所以在第2到第6行的代码首先会对第25行__proc_info_begin和第26行的__proc_info_end的虚拟地址转换,转换成物理地址,分别存放在r5和r6中,转换方法很简单

第7到第14行开始从r5(也就是"proc.info.init"段的起始物理地址)开始,以#PROC_INFO_SZ为步长进行遍历,寻找跟r9中的cpu id匹配的proc_info_list。匹配的方法很简单:从之前的分析知道,proc_info_list的前两个成员分别是cpu_val (r3)和cpu_mask (r4),将这两个值读出来,然后进行如下判断:(r9 & cpu_mask) 是否等于 cpu_val,如果相等,意味着找到匹配项,然后返回,此时r5中存放的是找到的proc_info_list的物理地址。否则的话,继续遍历下一个proc_info_list,直到遍历到最后一个proc_info_list,如果没有找到,r5被赋值为0,然后返回。

 

 

回到head.S继续分析。

5、第14到第17行代码完成的任务是计算物理内存的起始地址,方法如下:

    adr    r3, 2f
    ldmia    r3, {r4, r8}
    sub    r4, r3, r4            @ (PHYS_OFFSET - PAGE_OFFSET)
    add    r8, r8, r4            @ PHYS_OFFSET
    .ltorg
2:    .long    .
    .long    PAGE_OFFSET

首先获得2f标号的物理地址,在哪里存放的是2f标号的虚拟地址以及0xC000_0000。然后计算2f的物理地址跟虚拟地址之间的差值,再该差值加上0xC000_0000,就可以得到物理内存的起始地址。当然这里的前提是kernel被加载到(物理内存的起始地址 + 0x8000)处开始执行。

比如对于2440,执行完上面的操作后,r8的值是0x3000_0000,对于vexpress来说是,r8是0x6000_0000.

6、第23行,检查r2中传递的设备树镜像是否合法,如果不合法的话,r2会被清0。检查方法是:判断r2指向的地址的前4个字节是否等于OF_DT_MAGIC,是的话,表示合法,否则不合法

7、第25和第28行暂时忽略

 

未完待续

8、第30行调用__create_page_tables建立段式页表。

 

posted @ 2017-11-11 14:09  摩斯电码  阅读(2344)  评论(0编辑  收藏  举报