pandas rename 功能
- 在使用 pandas 的过程中经常会用到修改列名称的问题,会用到 rename 或者 reindex 等功能,每次都需要去查文档
- 当然经常也可以使用 df.columns重新赋值为某个列表
- 用 rename 则可以轻松应对 pandas 中修改列名的问题
导入常用的数据包
import pandas as pd
import numpy as np
构建一个 含有multiIndex的 Series
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
s = pd.Series(np.random.randn(8), index=index)
s.index
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
           labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
           names=['first', 'second'])
查看 s
s
first  second
bar    one      -0.073094
       two      -0.449141
baz    one       0.109093
       two      -0.033135
foo    one       1.315809
       two      -0.887890
qux    one       2.255328
       two      -0.778246
dtype: float64
使用set_names可以将 index 中的名称进行更改
s.index.set_names(['L1', 'L2'], inplace=True)
s
L1   L2 
bar  one    0.037524
     two   -0.178425
baz  one   -0.778211
     two    1.440168
foo  one    0.314172
     two    0.710597
qux  one    1.197275
     two    0.527058
dtype: float64
s.index
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
           labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
           names=['L1', 'L2'])
同样可以使用 rename 将Series 修改回来
s.index.rename(['first','second'],inplace= True)
s
first  second
bar    one       0.037524
       two      -0.178425
baz    one      -0.778211
       two       1.440168
foo    one       0.314172
       two       0.710597
qux    one       1.197275
       two       0.527058
dtype: float64
使用reset_index 可以将 index 中的两列转化为正常的列
s.reset_index()
  
    
      |  | first | second | 0 | 
  
  
    
      | 0 | bar | one | 0.037524 | 
    
      | 1 | bar | two | -0.178425 | 
    
      | 2 | baz | one | -0.778211 | 
    
      | 3 | baz | two | 1.440168 | 
    
      | 4 | foo | one | 0.314172 | 
    
      | 5 | foo | two | 0.710597 | 
    
      | 6 | qux | one | 1.197275 | 
    
      | 7 | qux | two | 0.527058 | 
  
 
可以使用 pivot_table 恢复成一开始的样子,将两列重新作为 index 展示出来
s.reset_index().pivot_table(index=['first','second'],values=0,aggfunc=lambda x:x)
  
    
      |  |  | 0 | 
    
      | first | second |  | 
  
  
    
      | bar | one | 0.037524 | 
    
      | two | -0.178425 | 
    
      | baz | one | -0.778211 | 
    
      | two | 1.440168 | 
    
      | foo | one | 0.314172 | 
    
      | two | 0.710597 | 
    
      | qux | one | 1.197275 | 
    
      | two | 0.527058 | 
  
 
同样可以使用最简单的方式进行更改 index 中的名称
s.index.names=['first1','second1'] ## 此操作,相当于直接赋值,会更改 s
s.index
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
           labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
           names=['first1', 'second1'])
s
first1  second1
bar     one        0.037524
        two       -0.178425
baz     one       -0.778211
        two        1.440168
foo     one        0.314172
        two        0.710597
qux     one        1.197275
        two        0.527058
dtype: float64
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,                    'B' : ['A', 'B', 'C'] * 4,
                 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
                  'D' : np.random.randn(12),
                 'E' : np.random.randn(12)})
df.head()
  
    
      |  | A | B | C | D | E | 
  
  
    
      | 0 | one | A | foo | 0.664180 | -0.107764 | 
    
      | 1 | one | B | foo | -0.833609 | 0.008083 | 
    
      | 2 | two | C | foo | 0.117919 | -1.365583 | 
    
      | 3 | three | A | bar | -0.116776 | -1.201934 | 
    
      | 4 | one | B | bar | -1.315190 | -0.157779 | 
  
 
df.pivot_table(index=['A','C'],values=['D'],columns='B',aggfunc=np.sum,fill_value='unknown')
  
    
      |  |  | D | 
    
      |  | B | A | B | C | 
    
      | A | C |  |  |  | 
  
  
    
      | one | bar | 2.71452 | -1.31519 | 0.0231296 | 
    
      | foo | 0.66418 | -0.833609 | -0.96451 | 
    
      | three | bar | -0.116776 | unknown | 0.450891 | 
    
      | foo | unknown | 0.012846 | unknown | 
    
      | two | bar | unknown | 0.752643 | unknown | 
    
      | foo | 0.963631 | unknown | 0.117919 | 
  
 
df1 =df.pivot_table(index=['A','C'],values=['D'],columns='B',aggfunc=np.sum,fill_value='unknown')
df1.index
MultiIndex(levels=[['one', 'three', 'two'], ['bar', 'foo']],
           labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
           names=['A', 'C'])
df1.index.names=['first','second']
df1
  
    
      |  |  | D | 
    
      |  | B | A | B | C | 
    
      | first | second |  |  |  | 
  
  
    
      | one | bar | 2.71452 | -1.31519 | 0.0231296 | 
    
      | foo | 0.66418 | -0.833609 | -0.96451 | 
    
      | three | bar | -0.116776 | unknown | 0.450891 | 
    
      | foo | unknown | 0.012846 | unknown | 
    
      | two | bar | unknown | 0.752643 | unknown | 
    
      | foo | 0.963631 | unknown | 0.117919 | 
  
 
df1_stack=df1.stack()
df1_stack.index.names=['first','second','third']
df1_stack
  
    
      |  |  |  | D | 
    
      | first | second | third |  | 
  
  
    
      | one | bar | A | 2.71452 | 
    
      | B | -1.31519 | 
    
      | C | 0.0231296 | 
    
      | foo | A | 0.66418 | 
    
      | B | -0.833609 | 
    
      | C | -0.96451 | 
    
      | three | bar | A | -0.116776 | 
    
      | B | unknown | 
    
      | C | 0.450891 | 
    
      | foo | A | unknown | 
    
      | B | 0.012846 | 
    
      | C | unknown | 
    
      | two | bar | A | unknown | 
    
      | B | 0.752643 | 
    
      | C | unknown | 
    
      | foo | A | 0.963631 | 
    
      | B | unknown | 
    
      | C | 0.117919 | 
  
 
df1_stack.columns=['总和']
df1_stack
  
    
      |  |  |  | 总和 | 
    
      | first | second | third |  | 
  
  
    
      | one | bar | A | 2.71452 | 
    
      | B | -1.31519 | 
    
      | C | 0.0231296 | 
    
      | foo | A | 0.66418 | 
    
      | B | -0.833609 | 
    
      | C | -0.96451 | 
    
      | three | bar | A | -0.116776 | 
    
      | B | unknown | 
    
      | C | 0.450891 | 
    
      | foo | A | unknown | 
    
      | B | 0.012846 | 
    
      | C | unknown | 
    
      | two | bar | A | unknown | 
    
      | B | 0.752643 | 
    
      | C | unknown | 
    
      | foo | A | 0.963631 | 
    
      | B | unknown | 
    
      | C | 0.117919 | 
  
 
df2 = df1_stack.reset_index()
df2.set_index('first')
  
    
      |  | second | third | 总和 | 
    
      | first |  |  |  | 
  
  
    
      | one | bar | A | 2.71452 | 
    
      | one | bar | B | -1.31519 | 
    
      | one | bar | C | 0.0231296 | 
    
      | one | foo | A | 0.66418 | 
    
      | one | foo | B | -0.833609 | 
    
      | one | foo | C | -0.96451 | 
    
      | three | bar | A | -0.116776 | 
    
      | three | bar | B | unknown | 
    
      | three | bar | C | 0.450891 | 
    
      | three | foo | A | unknown | 
    
      | three | foo | B | 0.012846 | 
    
      | three | foo | C | unknown | 
    
      | two | bar | A | unknown | 
    
      | two | bar | B | 0.752643 | 
    
      | two | bar | C | unknown | 
    
      | two | foo | A | 0.963631 | 
    
      | two | foo | B | unknown | 
    
      | two | foo | C | 0.117919 |