摘要: If we use sample mean: \(\frac{\sum_i{\left( X_i-\bar{X} \right)}^2}{n}\), then we should use sample variance:\(\frac{\sum_i{\left( X_i-\bar{X} \right 阅读全文
posted @ 2022-03-16 14:37 narip 阅读(47) 评论(0) 推荐(0)
摘要: Refer links 阅读全文
posted @ 2022-03-12 14:05 narip 阅读(16) 评论(0) 推荐(0)
摘要: 从Pauli算符看SU(2)与SO(3) 如果$U\in SU\left( 2 \right) $,对于任意一个$2x2$零迹厄密矩阵$\sigma=\left( \begin{matrix} z& x-iy\ x+iy& -z\ \end{matrix} \right)$,都有$U\sigma U 阅读全文
posted @ 2022-03-09 22:24 narip 阅读(376) 评论(0) 推荐(0)
摘要: 实现简单的VQE。 导入包。 from random import random import numpy as np import qiskit from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, e 阅读全文
posted @ 2022-03-09 20:29 narip 阅读(781) 评论(0) 推荐(0)
摘要: Most easy reading material!!! 转载 阅读全文
posted @ 2022-03-09 20:29 narip 阅读(40) 评论(0) 推荐(0)
摘要: Hamiltonian in the interaction picture $$ i\partial |\psi \rangle =H|\psi \rangle ,e^{iH_0t}|\psi \rangle =|\phi \rangle \ i\partial \left( e^{-iH_0t} 阅读全文
posted @ 2022-03-05 13:36 narip 阅读(22) 评论(0) 推荐(0)
摘要: Suppose \(p(x)\) is a polynomial of degree \(\leq n\) which is bounded in \([-1,+1]\) for \(x \in[-1,+1]\). What is the largest \(p^{\prime}(0)\) can 阅读全文
posted @ 2022-03-03 09:44 narip 阅读(61) 评论(0) 推荐(0)
摘要: DOI: 10.1103/PhysRevA.105.023718 Eq.(48): \[ \left< \left( n_a-n_b \right) ^2 \right> -\left< \left( n_a-n_b \right) \right> ^2 \\ c\left( |\phi 0\ran 阅读全文
posted @ 2022-02-27 18:16 narip 阅读(25) 评论(0) 推荐(0)
摘要: DOI: 10.1103/PhysRevLett.111.173601 Eq(17): \[ a_2=\frac{x+ip}{\sqrt{2}} \\ 2\bar{N}+1=2\left< {a_2}^{\dagger}a_2 \right> +1=2\left< \frac{x-ip}{\sqrt 阅读全文
posted @ 2022-02-27 13:36 narip 阅读(31) 评论(0) 推荐(0)
摘要: State after Beam Splitter Refer to page 9 of [^1] $$ |1\rangle |0\rangle \ \left( \begin{matrix} \cos \frac{\phi}{2}& -\sin \frac{\phi}{2}\ \sin \frac 阅读全文
posted @ 2022-02-25 22:13 narip 阅读(25) 评论(0) 推荐(0)