摘要: We consider $det(A\otimes B)$. Notice that $det(A\otimes B)=det(A\otimes II\otimes B)=det(A\otimes I)det(I\otimes B)$. Hence we have $det(A\otimes B)= 阅读全文
posted @ 2022-10-12 16:27 narip 阅读(93) 评论(0) 推荐(0)
摘要: 对易的两个物理量有共同的本征基,意味着可以同时被准确测量出来。反之若不对易,则意味着我们不能同时获得关于这两个力学量的精确信息。 对易力学完全集(CSCO:Complete set of commuting observables)定义:能够完全描述体系状态、彼此独立、相互对易的最小数目的一组力学量 阅读全文
posted @ 2022-10-10 22:01 narip 阅读(2492) 评论(0) 推荐(0)
摘要: 为什么SO(2)是一个Abel群? 可以从抽象的群元角度去理解:先转-60度再转30度和先转30度再转-60度是一样的;也可以从矩阵的角度去理解:\(\left( \begin{matrix} \cos\mathrm{(}\theta )& -\sin\mathrm{(}\theta )\\ \si 阅读全文
posted @ 2022-10-08 13:54 narip 阅读(405) 评论(0) 推荐(0)
摘要: $$ \mathcal{K}(t) \rho=-i[H, \rho]+\sum_i \gamma_i\left[A_i \rho A_i^{\dagger}-\frac{1}{2}\left{A_i^{\dagger} A_i, \rho\right}\right] $$ with $H(t)$ t 阅读全文
posted @ 2022-10-07 14:12 narip 阅读(35) 评论(0) 推荐(0)
摘要: Proposition (The orthogonal complement of a column space). Let A be a matrix and let $W=\operatorname{Col}(A)$. Then $$ W^{\perp}=\operatorname{Nul}\l 阅读全文
posted @ 2022-10-01 14:07 narip 阅读(31) 评论(0) 推荐(0)
摘要: $$\left( U\otimes \bar{U} \right) |\omega \rangle =\left( U\otimes \bar{U} \right) \frac{1}{\sqrt{2}}\left( |00\rangle +|11\rangle \right) \ \langle 0 阅读全文
posted @ 2022-09-11 16:22 narip 阅读(26) 评论(0) 推荐(0)
摘要: I will give an extended explanation of Nielsen's proof, i.e. your first ref link. The idea is that, $\rho=\sum_ip_i|i\rangle\langle i|$, we can prove 阅读全文
posted @ 2022-09-11 13:47 narip 阅读(24) 评论(0) 推荐(0)
摘要: Copied from this link For normal $X\sim N(\mu,\sigma^2)$, information matrix is $$\mathcal{I}_1 = \left( \begin{matrix} \frac{1}{\sigma^2} & 0 \ 0 & \ 阅读全文
posted @ 2022-08-21 13:35 narip 阅读(41) 评论(0) 推荐(0)
摘要: $$F=Tr\sqrt{\sqrt{\rho _{\theta}}\left( \rho _{\theta}+\partial \rho _{\theta}d\theta +\partial ^2\rho _{\theta}\frac{d\theta ^2}{2} \right) \sqrt{\rh 阅读全文
posted @ 2022-08-18 09:56 narip 阅读(22) 评论(0) 推荐(0)
摘要: $$We,,ignore,,time,,in,,\rho , i.e., \rho ,,is,,shorthand,,for,,\rho \left( t \right) \ \dot{\rho}=-i\left[ H,\rho \right] \ we,,define,,a,,linear,,ma 阅读全文
posted @ 2022-08-14 17:36 narip 阅读(38) 评论(0) 推荐(0)