20251213 - 最小生成树
生成树
生成树,就是在一个无向连通图中选择 \(n - 1\) 条边,使得这 \(n-1\) 条边构成了一棵树。
最小生成树
假设每一条边有边权,边权和最小的生成树就是最小生成树(MST)。
求法
1. Prim
这是一个点核心的算法。
每次选择点权最小的点,在扩展到邻居节点,这和 dijkstra 几乎一毛一样。
朴素时间复杂度:\(O(n^2+m)\)。
堆优化:\(O((n+m)\log_2m)\)
平衡树优化(实测更快一点):\(O((n+m)log_2m)\)
代码:
int Prim() {
int ans = 0;
priority_queue <Node> q;
vector <int> dist(n + 1, inf), vis(n + 1, 0);
dist[s] = 0;
q.push({s, 0});
while (!q.empty()) {
int u = q.top().v, w = q.top().w;
q.pop();
if (vis[u]) continue;
vis[u] = 1;
ans += w;
for (auto nxt : edges[u]) {
int v = nxt.v, w = nxt.w;
if (w < dist[v]) {
dist[v] = w;
q.push({v, dist[v]});
}
}
}
return ans;
}
2.kruskal
这是一个边核心的算法。
每次选择边权最小的边,在判断有没有环。
怎么判断有没有环呢?
Tarjan DSU!
代码:
int kruskal() {
vector <TreeNode> edges;
n = read(), m = read();
for (int i = 1; i <= n; i++) fa[i] = i;
for (int i = 1; i <= m; i++) {
int x = read(), y = read(), w = read();
edges.push_back({x, y, w});
}
sort(edges.begin(), edges.end());
int ans = 0, tot = 0;;
for (auto [x, y, w] : edges) { // C++17
x = find(x), y = find(y);
if (x != y) {
fa[x] = y;
ans += w;
tot++;
}
}
}
例题:
C - 营救
跑一下 kruskal,如果 find(s) == find(t) 直接输出即可。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define db double
#define sz(x) ((int)x.size())
#define inf (1 << 30)
#define pb push_back
typedef pair<int, int> PII;
const int N = 1e5 + 7;
const int P = 998244353;
int read() {
int x = 0, f = 1;
char ch = getchar();
while (!(ch >= '0' && ch <= '9')) {if (ch == '-') f = -f;ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0';ch = getchar();}
return x * f;
}
int n, m, fa[N], s, t;
struct TreeNode {
int x, y, w;
bool operator < (const TreeNode &A) const {
return w < A.w;
}
};
vector <TreeNode> edges;
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
int main() {
n = read(), m = read(), s = read(), t = read();
for (int i = 1; i <= n; i++) fa[i] = i;
for (int i = 1; i <= m; i++) {
int x = read(), y = read(), w = read();
edges.push_back({x, y, w});
}
sort(edges.begin(), edges.end());
int ans = inf, tot = 0;;
for (auto [x, y, w] : edges) {
x = find(x), y = find(y);
if (x != y) {
fa[x] = y;
tot++;
if (find(s) == find(t)) {
ans = min(ans, w);
}
}
}
printf("%d\n", ans);
return 0;
}
D - Out of Hay S
就是求一个 max 即可。
E - 买礼物
把每一个优惠边权设成 A,再把不优惠连向 0 号点,再搞一遍 MST。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define db double
#define sz(x) ((int)x.size())
#define inf (1 << 30)
#define pb push_back
typedef pair<int, int> PII;
const int N = 5000 + 7;
const int P = 998244353;
int read() {
int x = 0, f = 1;
char ch = getchar();
while (!(ch >= '0' && ch <= '9')) {if (ch == '-') f = -f;ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0';ch = getchar();}
return x * f;
}
int n, m, fa[N], a[N][N];
struct TreeNode {
int x, y, w;
bool operator < (const TreeNode &A) const {
return w < A.w;
}
};
vector <TreeNode> edges;
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
int main() {
m = read(), n = read();
for (int i = 1; i <= n; i++) fa[i] = i;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
a[i][j] = read();
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
if (a[i][j]) {
edges.pb({i, j, a[i][j]});
}
}
}
for (int i = 1; i <= n; i++) {
edges.pb({0, i, m});
}
sort(edges.begin(), edges.end());
int ans = 0, tot = 0;;
for (auto [x, y, w] : edges) {
x = find(x), y = find(y);
if (x != y) {
fa[x] = y;
ans += w;
tot++;
}
}
printf("%d\n", ans);
return 0;
}
后记
警钟敲烂:在写并查集时请不要带 \(\log\)!!!

浙公网安备 33010602011771号