【d2l】3.5-7.softmax回归实现
【d2l】3.5-7.softmax回归实现
图像分类数据集
这一部分采用Fashion-MNIST数据集,以衣装为主体,数据是28×28的位图
读取数据集
先用框架内置的函数下载并读取Fashion-MNIST数据集
trans = transforms.ToTensor() # 通过ToTensor实例将PIL转化为float32
mnist_train = torchvision.datasets.FashionMNIST(
root = '../data', train = True, transform = trans, download = True
)
mnist_test = torchvision.datasets.FashionMNIST(
root = '../data', train = False, transform = trans, download = False
)
接着看一下一些具体的数值
len(mnist_train), len(mnist_test)
mnist_train[0][0].shape
得到
(60000, 10000)
torch.Size([1, 28, 28])
该数据集包含10个类别,需要先写个函数把数字索引转化为对应的文本名称
def get_fashion_mnist_labels(labels):
"""返回Fashion-MNIST数据集的文本标签"""
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
然后创建一个函数来可视化这些样本
def show_images(imgs, num_rows, num_cols, titles = None, scale = 1.5):
"""绘制图像列表"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = plt.subplots(num_rows, num_cols, figsize = figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
接着可以读取一下可视化数据
X, y = next(iter(data.DataLoader(mnist_train, batch_size = 18)))
d2l.show_images(X.reshape(18, 28, 28), 2, 9, titles = d2l.get_fashion_mnist_labels(y))

读取小批量
通过随机打乱样本来均匀地读取小批量数据
batch_size = 256
train_iter = data.DataLoader(mnist_train, batch_size, shuffle = True,
num_workers = 0)
本来workers数量为4,但是这是linux系统下的要求,windows下只能指定workers为0了
看一下读取训练数据所需的时间
timer = d2l.Timer()
for X, y in train_iter:
continue
f'{timer.stop() : .2f} sec'
' 1.59 sec'
整合所有组件
下面定义一个load_data_fashion_mnist函数,用于获取和读取Fasion-MNIST数据集,用于返回训练集和数据集的数据迭代器。另外这个函数还可以接收一个resize函数来调整图像形状
def load_data_fashion_mnist(batch_size, resize = None):
"""下载Fashion-MNIST数据集,然后将其加载到内存中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(
root = '../data', train = True, transform = trans, download = True
)
mnist_test = torchvision.datasets.FashionMNIST(
root = '../data', train = False, transform = trans, download = True
)
return (data.DataLoader(mnist_train, batch_size, shuffle = True,
num_workers = get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle = False,
num_workers = get_dataloader_workers()))
下面通过resize测试一下功能
train_iter, test_iter = d2l.load_data_fashion_mnist(32, resize = 64)
for X, y in train_iter:
print(X.shape, X.dtype, y.shape, y.dtype)
break
torch.Size([32, 1, 64, 64]) torch.float32 torch.Size([32]) torch.int64
softmax回归从零实现
首先设置一下批量大小为256,读取一下迭代器
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
接着初始化参数,输入为784,输出为10,权重会构成一个784×10的矩阵,偏置是1×10的行向量
初始化用正态分布赋值权重参数,用0赋值偏置
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size = (num_inputs, num_outputs), requires_grad = True)
b = torch.zeros(num_outputs, requires_grad = True)
实现softmax操作
先确定一下dim=0/1分别是对什么求和
X = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
X.sum(0, keepdim = True), X.sum(1, keepdim = True)
(tensor([[5., 7., 9.]]),
tensor([[ 6.],
[15.]]))
而softmax会对每一行求和,所以代码如下
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim = True)
return X_exp / partition
测试一下
X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
(tensor([[0.0843, 0.1743, 0.3726, 0.3337, 0.0351],
[0.3489, 0.1992, 0.0983, 0.1707, 0.1829]]),
tensor([1.0000, 1.0000]))
定义模型及损失函数
下面的模型用reshape转化成向量
def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
损失函数用交叉熵损失,负对数似然实现
def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
tensor([2.3026, 0.6931])
分类精度
从分类问题中,我们需要增加接口,用精确度来评估模型的准确程度
def accuracy(y_hat, y):
"""计算预测正确的数量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis = 1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
另外对于任意数据迭代器data_iter可访问的数据集评估精度
class Accumulator:
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
这个Accumulator类用于对多个变量进行累加,后续可复用
def evaluate_accuracy(net, data_iter):
"""计算在指定数据集上模型的精度"""
if isinstance(net, torch.nn.Module):
net.eval() # 设置为评估模式
metric = Accumulator(2) # 正确预测数、预测总数
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
训练
先写个Animator用于追踪曲线的变化状态
class Animator:
"""在动画中绘制数据"""
def __init__(self, xlabel = None, ylabel = None, legend = None,
xlim = None, ylim = None,
xscale = 'linear', yscale = 'linear',
fmts = ('-', 'm--', 'g-.', 'r:'), nrows = 1, ncols = 1,
figsize = (3.5, 2.5)):
# 增量地绘制多条曲线
if legend is None:
legend = []
use_svg_display()
self.fig, self.axes = plt.subplots(nrows, ncols, figsize = figsize)
if ncols * nrows == 1:
self.axes = [self.axes, ]
# 使用lambda捕获函数
self.config_axes = lambda: set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend
)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, '__len__'):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait = True)
接着写个训练一个epoch的函数
def train_epoch_ch3(net, train_iter, loss, updater):
"""训练模型一轮"""
# 将模型设置为训练模式
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和、训练准确度总和、样本数
metric = Accumulator(3)
for X, y in train_iter:
# 计算梯度并更新参数
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch内置优化器和损失函数
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定制的优化器和损失函数
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回训练损失和训练精度
return metric[0] / metric[2], metric[1] / metric[2]
最后实现一个训练函数,它在train_iter访问的训练数据集上训练一个模型net,利用test_iter评估
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
"""训练模型"""
animator = Animator(xlabel = 'epoch', xlim = [1, num_epochs], ylim = [0.3, 0.9],
legend = ['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc, ))
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
lr = 0.1
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
训练出来的曲线如下

预测
写一个预测函数,目前模型已经实现了分类,给定一定数量的样本,显示实际标签和对应预测
def predict_ch3(net, test_iter, n = 6):
"""预测标签"""
for X, y in test_iter:
break
trues = get_fashion_mnist_labels(y)
preds = get_fashion_mnist_labels(net(X).argmax(axis = 1))
titles = [true + '\n' + pred for true, pred in zip(trues, preds)]
show_images(
X[0:n].reshape((n, 28, 28)), 1, n, titles = titles[0:n]
)
d2l.predict_ch3(net, test_iter)

softmax简洁实现
下面将全部用内置接口实现,以下是完整代码
import torch
from torch import nn
import sys
sys.path.append('../')
from d2l_local import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
net = nn.Sequential(
nn.Flatten(), # 需要人工展平
nn.Linear(784, 10)
)
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std = 0.01)
net.apply(init_weights)
loss = nn.CrossEntropyLoss(reduction = 'none')
trainer = torch.optim.SGD(net.parameters(), lr = 0.1)
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
训练结果和前一种相似
其中需要重新审视一下softmax实现,事实上假如\(o_j\)的数值特别大的话,可能导致精度不够从而softmax值为0,为了避免这种情况,会让所有的\(o_j \leftarrow o_j - \max\{ o_k \}\)
从而

浙公网安备 33010602011771号