Java线程同步的Monitor机制(Lock配合Condition)
Monitor模式是一种常见的并行开发机制, 一个Monitor实例可以被多个线程安全使用, 所有的monitor下面的方法在运行时是互斥的, 这种互斥机制机制可以用于一些特性, 例如让线程等待某种条件, 在等待时线程会将CPU时间交出去, 但是在条件满足时确保重新获得CPU时间. 在条件达成时, 你可以同时通知一个或多个线程. 这样做有以下的优点:
- 所有的同步代码都集中在一起, 用户不需要知道这是如何实现的
- 代码不依赖于线程数量, 线程数量只取决于业务需要
- 不需要对某个互斥对象做释放, 不存在忘记的风险
一个Monitor的结构是这样的
public class SimpleMonitor {
public method void testA(){
//Some code
}
public method int testB(){
return 1;
}
}
使用Java代码不能直接创建一个Monitor, 要实现Monitor, 需要使用Lock和Condition类. 一般使用的Lock是ReentrantLock, 例如
public class SimpleMonitor {
private final Lock lock = new ReentrantLock();
public void testA() {
lock.lock();
try {
//Some code
} finally {
lock.unlock();
}
}
public int testB() {
lock.lock();
try {
return 1;
} finally {
lock.unlock();
}
}
}
如果不需要判断条件, 那么用synchronized就可以了. 在需要判断条件的情况下, 使用Lock的newCondition()方法创建Condition, 可以通过Condition的await方法, 让当前线程wait, 放弃cpu时间. 然后用signal或者signalAll方法让线程重新获得CPU时间. signalAll方法会唤起所有wait在当前condition的线程. 下面是一个例子, 一个需要被多个线程使用的容量固定的buffer.
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class BoundedBuffer {
private final String[] buffer;
private final int capacity;
private int front;
private int rear;
private int count;
private final Lock lock = new ReentrantLock();
private final Condition notFull = lock.newCondition();
private final Condition notEmpty = lock.newCondition();
public BoundedBuffer(int capacity) {
super();
this.capacity = capacity;
buffer = new String[capacity];
}
public void deposit(String data) throws InterruptedException {
lock.lock();
try {
while (count == capacity) {
notFull.await();
}
buffer[rear] = data;
rear = (rear + 1) % capacity;
count++;
notEmpty.signal();
} finally {
lock.unlock();
}
}
public String fetch() throws InterruptedException {
lock.lock();
try {
while (count == 0) {
notEmpty.await();
}
String result = buffer[front];
front = (front + 1) % capacity;
count--;
notFull.signal();
return result;
} finally {
lock.unlock();
}
}
}
代码说明
- 这两个方法通过lock互斥
- 然后通过两个condition变量, 一个用于在buffer非空时等待, 一个用于buffer未满时等待
- 上面使用while循环将await包围, 这是为了防止在使用Signal&Condition时产生signal stealers问题.
- 以上方法可以安全地在多个线程中被调用
还有一个例子, 用于协调多个线程按固定顺序进行输出
public class TestSequentialThreads {
private final Lock lock = new ReentrantLock();
private final Condition[] conditions = {lock.newCondition(), lock.newCondition(), lock.newCondition()};
private int count = 0;
public void action(int i) {
while (true) {
print(i + " wait lock");
lock.lock();
print(i + " has lock");
try {
while (count != i) {
print(i + " await");
conditions[i].await();
}
print("===== " + i + " =====");
Thread.sleep(500);
count = (count + 1) % 3;
int j = (i + 1) % 3;
print(i + " signal " + j);
conditions[j].signal();
} catch (InterruptedException e) {
print(i + " InterruptedException");
} finally {
print(i + " unlock");
lock.unlock();
}
}
}
public static void main(String[] args) {
TestSequentialThreads ts = new TestSequentialThreads();
new Thread(()->ts.action(0)).start();
new Thread(()->ts.action(2)).start();
new Thread(()->ts.action(1)).start();
new Thread(()->ts.action(1)).start();
new Thread(()->ts.action(0)).start();
new Thread(()->ts.action(2)).start();
}
public static void print(String str) {
System.out.println(str);
}
}
如果是使用wait()和notify()的话, 就要写成这样, 这种情况下, 运行时notify()随机通知的线程, 是有可能不满足而跳过的.
public class DemoThreadWait2 {
private Object obj = 0;
private int pos = 1;
public void one(int i) {
synchronized (obj) {
if (pos == i) {
System.out.println("T-" + i);
pos = i % 3 + 1;
} else {
// System.out.println(".");
}
obj.notify();
try {
obj.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args) {
DemoThreadWait2 demo = new DemoThreadWait2();
new Thread(()->{
while(true) {
demo.one(1);
}
}).start();
new Thread(()->{
while(true) {
demo.one(2);
}
}).start();
new Thread(()->{
while(true) {
demo.one(3);
}
}).start();
}
}
浙公网安备 33010602011771号