§3. 函数概念
§3. 函数概念
- 掌握三种新函数的定义:符号函数、狄利克雷函数、黎曼函数。(常用来举反例)
- 掌握函数的相关概念及四则运算、复合函数和反函数的定义。
注意:定义四则运算、复合和反函数时,要注意相关函数的定义域。
重点习题:习题10、11、12. 习题10考察反三角函数, 习题11考察绝对值函数, 习题12考察取整函数.
狄利克雷

约翰·彼得·古斯塔夫·勒热纳·狄利克雷(Johann Peter Gustav Lejeune Dirichlet),德国数学家。科隆大学博士。历任柏林大学和格廷根大学教授。柏林科学院院士。是解析数论的创始人。创立了现代函数的正式定义。对函数论、位势论和三角级数论都有重要贡献。主要著作有《数论讲义》、《定积分》等。
其家庭来自比利时的小镇利克雷(Richelet),此乃其姓氏勒热纳·狄利克雷(le jeune de Richelet = 法语:来自利克雷的小伙子)的来源。狄利克雷生于迪伦,其父为邮局局长。自幼喜欢数学,在12岁前就将零用钱攒起来买数学书阅读。16岁中学毕业后,父母希望他学习法律,但狄利克雷却决心攻读数学,他先在迪伦学习,后到哥廷根受业于高斯。1822年到1827年间旅居巴黎当家庭教师。在此期间,他参加了以傅里叶为首的青年数学家小组的活动,深受傅里叶学术思想的影响。1827年在波兰布雷斯劳大学任讲师。1829年任柏林大学讲师,1839年升为教授。1855年,高斯逝世后,他作为高斯的继任者被哥廷根大学聘任为教授,直至逝世。他1831年被选为普鲁士科学院院士,1855年被选为英国皇家学会会员。其妻瑞贝卡·门德尔松(Rebecca Mendelssohn)是音乐家费利克斯·门德尔松之姐。
黎曼

格奥尔格·弗雷德里希·波恩哈德·黎曼(德语:Georg Friedrich Bernhard Riemann,1826年9月17日-1866年7月20日)德国数学家,复变函数论创始人之一,黎曼几何学创始人,并且给后来爱因斯坦的广义相对论提供了数学基础。
1846年,按照父亲的意愿,黎曼进入哥廷根大学神学院学习哲学和神学。在此期间他去听了一些数学讲座,包括高斯关于最小二乘法的讲座。在得到父亲的允许后,他改学数学。1847年春,黎曼转到柏林大学,投入雅可比、狄利克雷和斯坦纳(英语:Jakob Steiner)门下。两年后他回到哥廷根大学任教。1851年获博士学位,博士导师为高斯。1854年他初次登台作了题为“论作为几何基础的假设”的演讲,开创了黎曼几何学,并为爱因斯坦的广义相对论提供了数学基础。他在1857年升为哥廷根大学的编外教授,并在1859年狄利克雷去世后作为狄利克雷的继承人任正教授。
黎曼几何
黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。黎曼几何的模型是一个经过适当“改进”的球面。
欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。
在我们这个不大不小、不远不近的空间里,也就是在我们的日常生活中,欧式几何是适用的;在宇宙空间中或原子核世界,罗氏几何更符合客观实际;在地球表面研究航海、航空等实际问题中,黎曼几何更准确一些。
黎曼猜想
黎曼ζ(s)函数的所有非平凡零点都位于临界线上。黎曼猜想由波恩哈德·黎曼于1859年提出。它是数学中一个重要而又著名的未解决的问题(猜想界皇冠)。多年来它吸引了许多出色的数学家为之绞尽脑汁。
1900年,大卫·希尔伯特将黎曼猜想包括在他著名的23条问题中,与哥德巴赫猜想一起组成了希尔伯特名单上的第8号问题。同时黎曼猜想也是希尔伯特问题中唯一一个被收入克雷数学研究所的千禧年大奖数学难题的。希尔伯特曾说,如果他在沉睡1000年后醒来,他将问的第一个问题便是:黎曼猜想得到证明了吗?过去的一百多年,许多数学家声称证明了黎曼猜想。截至2015年为止,尚有一些证明还未被验证;但它们都被数学社群所质疑,多数专家并不相信它们是正确的。
浙公网安备 33010602011771号