12 2018 档案
摘要:(2015华中科技大学理科实验班选拔)
已知三次方程$x^3+ax^2+bx+x=0$有三个实数根.
(1)若三个实根为$x_1,x_2,x_3$,且$x_1\le x_2\le x_3,a,b$为常数,求$c$变化时$x_3-x_1$的取值范围.
(2)若三个实数根为$a,b,c$,求$a,b,c$
阅读全文
摘要:若$\Delta ABC$满足:$\tan\dfrac{A}{2}\cdot\tan\dfrac{C}{2}=\dfrac{1}{3},b=\dfrac{4}{3}a$,则$\sin B=$______
阅读全文
摘要:已知$0{<}x_1{<}c{<}x_2{<}e^{\frac{3}{2}},$且$\dfrac{1-ln(c)}{c^2} = \dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}$,
证明:$c^2{<}x_1x_2$
阅读全文
摘要:已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$
阅读全文
摘要:已知函数$f(x)=e^x-e^{-x}-2x$
(1)讨论$f(x)$的单调性;
(2)设$g(x)=f(2x)-4bf(x),$当$x>0$时,$g(x)>0,$求$b$的最大值;
(3)已知$1.4142<\sqrt{2}<1.4143$,估计$\ln 2$的近似值(精确到0.001).
阅读全文
摘要:已知$f(x)=\sum\limits_{k=1}^{2017}\dfrac{\cos kx}{\cos^k x},$则$f(\dfrac{\pi}{2018})=$_____
阅读全文
摘要:若不等式$k\sin^2B+\sin A\sin C>19\sin B\sin C$对任意$\Delta ABC$都成立,则$k$的最小值为_____
阅读全文
摘要:已知$f(x)=2ax\cos^2x+(a-1)\cos x-1,a>0$,记$|f(x)|$的最大值为$A$,
1)求A.
2)证明:$|-2a\sin 2x+(1-a)\sin x|\le 2A$
阅读全文
摘要:设函数$f(x)=ax^2+(2b+1)x-a-2$($a,b\in\mathcal R$,$a\neq 0$).
(1) 若$a=-2$,求函数$y=|f(x)|$在$[0,1]$上的最大值$M(b)$;
(2) 若函数$f(x)$在区间$(0,1)$有两个不同的零点,求证:$\dfrac{(2+a)(1-2b)}{a^2}<\dfrac{1}{16}$.
阅读全文
摘要:已知 $r_1=0,r_{100}=0.85,(r_k$ 表示投 k 次投中的概率.)
求证:(1)是否存在$n_0$使得$r_{n_0}=0.5$
(2)是否存在$n_1$使得$r_{n_1}=0.8$
阅读全文
摘要:\begin{equation*}
\textbf{已知}x_1,x_2<\pi,x_{n+1}=x_n+\left\{ \begin{aligned}
sin x_n &,x_n>x_{n+1}\\
cos x_n&,x_n\le x_{n+1}\\
\end{aligned} \right.
\end{equation*}
证明:$ x_n<\dfrac{3\pi}{2}$
阅读全文
摘要:已知 $a$ 为常数,函数$f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}$ 的最小值为$-\dfrac{2}{3}$,则 $a$ 的取值范围_____
阅读全文
摘要:已知$a+b=1$,求$(a^3+1)(b^3+1)$的最大值_____
阅读全文
摘要:已知$x,y>0,\dfrac{1}{x}+\dfrac{2}{y}=1$,求$\dfrac{1}{x+1}+\dfrac{2}{y+1}$的最大值____
阅读全文
摘要:已知$a,b>0$且$ab(a+b)=4$,求$2a+b$的最小值_____
阅读全文
摘要:若$f(x^2)$的定义域为$[-1,1]$,则函数$f(x)$的定义域为______
阅读全文
摘要:设双曲线$x^2-\dfrac{y^2}{3}=1$的左右焦点为$F_1,F_2$, 直线$l$ 过$F_2$且与双曲线交于$A,B$两点.若$l$的斜率存在,且$(\overrightarrow{F_1A}+\overrightarrow{F_1B})\cdot\overrightarrow{AB}=0$, 求$l$的斜率_____
阅读全文
摘要:设$f(x)$是定义在$(0,+\infty)$上的单调函数,且对定义域内的任意实数$x$,都有
$f(f(x)-\log_2 x)=3$求$f(x)-f^{'}(x)=2$的解所在的区间._____
A.$(0,\dfrac{1}{2})$
B.$(\dfrac{1}{2},1)$
C.$(1,2)$
D.$(2,3)$
阅读全文
摘要:(2016天津压轴题)设函数$f(x)=(x-1)^3-ax-b,x\in R$, 其中$a,b\in R$
(1)求$f(x)$的单调区间.
(2)若$f(x)$存在极值点$x_0$,且$f(x_1)=f(x_0),$其中$x_1\ne x_0$,求证:$x_1+2x_0=3$;
(3)设$a>0$,函数$g(x)=|f(x)|,$求证:$g(x)$在区间$[0,2]$上的最大值不小于$\dfrac{1}{4}$
阅读全文
摘要:如图,已知椭圆方程为$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$$A$为椭圆上一点,$AF_1,AF_2$与椭圆交于$B,C$两点,$A_1B,A_2C$交于一点$M$.当$A$ 在椭圆上运动时,求点$M$的运动轨迹.
阅读全文
摘要:函数$f(x)=\dfrac{4x}{x+1}(x>0),g(x)=\dfrac{1}{2}(|x-a|-|x-b|),(a{<}b)$, 若对任意$x_1>0$,存在$x_2\le x_1$,使得$g(x_2)=f(x_1)$,则$2a+b$的最大值为____
阅读全文
摘要:(2016四川高考数学解答压轴题)设函数$f(x)=ax^2-a-\ln x,a\in R$.
1)讨论$f(x)$的单调性;
2)确定$a$的所有可能值,使得$f(x)>\dfrac{1}{x}-e^{1-x}$在区间$(1,+\infty)$内恒成立.
阅读全文

浙公网安备 33010602011771号