11 2018 档案

摘要:(2012新课标9)已知$\omega>0,$函数$f(x)=sin(\omega x+\dfrac{\pi}{4})$在$(\dfrac{\pi}{2},\pi)$上单调递减,则$\omega$的取值范围是______ 阅读全文
posted @ 2018-11-26 08:26 M.T 阅读(706) 评论(0) 推荐(0)
摘要:已知函数$f(x)=x-\dfrac{1}{1+x},g(x)=x^2-2ax+4,$若对任意$x_1\in[0,1]$,存在$x_2\in[1,2]$,使得$f(x_1)=g(x_2)$,则实数$a$的取值范围____ 阅读全文
posted @ 2018-11-15 17:45 M.T 阅读(282) 评论(0) 推荐(0)
摘要:如图,设点$M(x_0,y_0)$是椭圆$C:\dfrac{x^2}{2}+y^2=1$上一点,从原点$O$向圆$M:(x-x_0)^2+(y-y_0)^2=\dfrac{2}{3}$作两条切线分别与椭圆$C$交于$P,Q$,直线$OP,OQ$的斜率分别为$k_1,k_2$ (1)求证:$k_1k_2$为定值 (2)求四边形$OPQM$面积的最大值. 阅读全文
posted @ 2018-11-15 17:02 M.T 阅读(1083) 评论(0) 推荐(0)
摘要:已知椭圆$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$($a > b > 0$),${F_1}$、${F_2}$为其左右焦点,$P$为椭圆$C$上任意一点,$I$为$\triangle P{F_1}{F_2}$内切圆圆心,点$G$满足$\overrightarrow {P{F_1}}+ \overrightarrow {P{F_2}}= 3\overrightarrow {PG} $且$\overrightarrow {GI}= \lambda \overrightarrow {{F_1}{F_2}} $($\lambda\in {\mathbb {R}}$且$\lambda\ne 0$),则椭圆的离心率是___ 阅读全文
posted @ 2018-11-13 08:46 M.T 阅读(2536) 评论(0) 推荐(0)
摘要:已知直线$l:x+y-\sqrt{3}=0$过椭圆$E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的右焦点且与椭圆$E$交于$A,B$两点,$P$为$AB$中点,$OP$的斜率为$\dfrac{1}{2}$. (1)求椭圆$E$的方程; (2)设$CD$是椭圆$E$的动弦,且其斜率为$1$,问椭圆$E$上是否存在定点$Q$,使得直线$QC,QD$的斜率分别为$k_1,k_2$满足$k_1+k_2=0?$若存在,求出$Q$的坐标;若不存在,请说明理由. 阅读全文
posted @ 2018-11-12 16:36 M.T 阅读(704) 评论(0) 推荐(0)
摘要:是否存在一个正方体,它的8个顶点到某一个平面的距离恰好为$0,1,2,3,4,5,6,7$ ?若存在指出正方体与相应的平面的位置关系.不存在说明理由. 阅读全文
posted @ 2018-11-05 16:52 M.T 阅读(538) 评论(0) 推荐(1)
摘要:椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的一个焦点为$F$,过$F$的直线交椭圆于$A,B$两点,$M$是点$A$关于原点的对称点.若$|AB|\perp |FM|,|AB|=|FM|$则椭圆的离心率为___ 阅读全文
posted @ 2018-11-04 15:13 M.T 阅读(269) 评论(0) 推荐(0)
摘要:探讨函数$f(x)=\dfrac{1}{x-a}+\dfrac{1}{x-b}$其中$a{<}b$的几个性质 阅读全文
posted @ 2018-11-04 14:46 M.T 阅读(1017) 评论(0) 推荐(0)
摘要:若$|x^2+|x-a|+3a|\le2$对任意$x\in[-1,1]$恒成立,则$a$ 的取值范围_____ 阅读全文
posted @ 2018-11-04 14:27 M.T 阅读(318) 评论(0) 推荐(0)
摘要:已知函数$f(x)=x^2+x-2$,若$g(x)=|f(x)|-f(x)-2mx-2m^2$ 有三个不同的零点,则$m$的取值范围_____ 阅读全文
posted @ 2018-11-04 14:19 M.T 阅读(318) 评论(0) 推荐(0)
摘要:(2011年AAA测试)将一枚均匀的硬币连续抛掷$n$次,以$p_n$ 表示未出现连续3次正面的概率.求$\{P_n\}$.并讨论$\{P_n\}$单调性和极限. 阅读全文
posted @ 2018-11-04 14:09 M.T 阅读(268) 评论(0) 推荐(0)
摘要:已知椭圆方程:$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,过点$P(1,1)$的两条直线分别与椭圆交于点$A,C$和$B,D$,且满足$\overrightarrow{AP}=\lambda\overrightarrow{PC},\overrightarrow{BP}=\lambda\overrightarrow{PD}$, 当$\lambda$变化时,直线$AB$的斜率是否为定值?若是求此定值. 阅读全文
posted @ 2018-11-04 13:44 M.T 阅读(772) 评论(0) 推荐(0)
摘要:已知半径为2的球面上有$A,B,C,D$四点,若$AB=CD=2$,则四面体$ABCD$的体积最大为____ 阅读全文
posted @ 2018-11-01 08:35 M.T 阅读(886) 评论(0) 推荐(0)