每日导数(第二季)1

原创一个双变量问题

已知函数\(f(x)=\ln+\dfrac{1}{x}-a\)

(1)当\(a=1\)时,求\(f(x)\)\(x=1\)处的切线

(2)讨论\(f(x)\)的零点个数

(3)当\(f(x)\)有两个零点\(x_1,x_2\)时,证明:\(x_1+x_2>2a\)


(1)\(y=2\)

(2)\(f(x)=0\Leftrightarrow x\ln x-ax+1=0\),记\(g(x)=x\ln x-ax+1\)

\(g^{\prime}(x)=\ln x+1-a,\)\(g^\prime\left(e^{a-1}\right)=0\),则$ g(x)\(在\)\left(0,e{a-1}\right)$递减,在$\left(e,+\infty\right)$递增

从而\(g(x)_{\min}=g\left(e^{a-1}\right)=1-e^{a-1}\)

Case1 当\(a<1\)时,\(g(x)_{\min}=1-e^{a-1}>0\),此时没有零点

Case2 当\(a=1\)时,\(g(x)_{\min}=1-e^{a-1}=0\),此时有唯一零点

Case3 当\(a>1\)时,\(g(x)_{\min}=1-e^{a-1}<0\)

\(x\in(0,1)\)上,取\(x=\dfrac{1}{a}\),有\(g\left(\dfrac{1}{a}\right)=-\dfrac{1}{a}\ln a>0\),而\(g(1)=1-a<0\)

由零点存在定理,在\(x\in\left(\dfrac{1}{a},1\right)\)上至少才能在一个零点

又因\(g(x)\)在此区间上单调,从而在此区间只有一个零点

\(x>1\)上,取\(x=e^a\),有\(g\left(e^a\right)=ae^a-ae^a+1=1>0,g(a)=1-a<0\)

由零点存在定理,在\(x\in\left(1,e^a\right)\)上至少才能在一个零点

又因\(g(x)\)在此区间上单调,从而在此区间只有一个零点

综上:\(\begin{cases} a<1,0\text{个}\\ a=1,1\text{个}\\ a>1,2\text{个}\\ \end{cases}\)

(3)法一:设\(x_1<1<x_2\),先证明:$$x\in(0,1),\ln x>\dfrac{1}{2}\left(x-\dfrac{1}{x}\right)$$

\(\varphi(x)=2\ln x-x+\dfrac{1}{x},\varphi^\prime(x)=\dfrac{2}{x}-\dfrac{1}{x^2}-1=-\left(\dfrac{1}{x}-1\right)^2<0\), 取\(x>1,\)\(0<\dfrac{1}{x}<1\),代入有$$x>1,\ln x<\dfrac{1}{2}\left(x-\dfrac{1}{x}\right)$$

从而有
\(①\begin{cases} \ln x_1>\dfrac{1}{2}\left(x_1-\dfrac{1}{x_1}\right)\\ \ln x_2<\dfrac{1}{2}\left(x_2-\dfrac{1}{x_2}\right) \end{cases}\)

\(\begin{cases} x_1\ln x_1-ax_1+1=0\\ \\ x_2\ln x_2-ax_2+1=0 \end{cases}\Rightarrow ②\begin{cases} \ln x_1=\dfrac{ax_1-1}{x_1}\\ \ln x_2=\dfrac{ax_2-1}{x_2} \end{cases}\)

联立①,②有\(\begin{cases} \dfrac{ax_1}{x_1}>\dfrac{1}{2}\left(x_1-\dfrac{1}{x_1}\right)\\ \dfrac{ax_2}{x_2}<\dfrac{1}{2}\left(x_2-\dfrac{1}{x_2}\right) \end{cases}\Rightarrow \begin{cases} ax_1-1>\dfrac{1}{2}\left(x_1^2-1\right)\\ ax_2-1<\dfrac{1}{2}\left(x_2^2-1\right) \end{cases}\)

做差得到$$a(x_1-x_2>\dfrac{1}{2}(x_1-x_2)(x_1+x_2)\Rightarrow x_1+x_2>2a$$

法二:设\(x_1<1<x_2\)

\(\begin{cases} x_1\ln x_1-ax_1+1=0\\ \\ x_2\ln x_2-ax_2+1=0 \end{cases}\Rightarrow \dfrac{x_1-x_2}{\ln x_1-\ln x_2}=x_1x_2\)

由对数均值不等式得

\[x_1x_2=\dfrac{x_1-x_2}{\ln x_1-\ln x_2}>\sqrt{x_1x_2}\Rightarrow x_1x_2>1 \]

用样的有\(\begin{cases} x_1\ln x_1-ax_1+1=0\\ \\ x_2\ln x_2-ax_2+1=0 \end{cases}\Rightarrow 2a=\ln x_1+\dfrac{1}{x_1}+\ln x_2+\dfrac{1}{x_2}=\ln x_1x_2+\dfrac{x_1+x_2}{x_1x_2}\)

则要证不等式转化为$$_1+x_2>\ln x_1x_2+\dfrac{x_1+x_2}{x_1x_2}\Rightarrow \dfrac{1}{x_1x_2}+\dfrac{\ln x_1x_2}{x_1+x_2}<1$$

\(x_1+x_2>2\sqrt{x_1x_2}\),则要证:$$\dfrac{1}{x_1x_2}+\dfrac{\ln x_1x_2}{x_1+x_2}<1$$

即证$$\dfrac{1}{x_1x_2}+\dfrac{\ln x_1x_2}{x_1+x_2}<\dfrac{\ln x_1x_2}{2\sqrt{x_1x_2}}+\dfrac{1}{x_1x_2}<1$$

\(\sqrt{x_1x_2}=t>1,\gamma(t)=\dfrac{\ln t}{t}+\dfrac{1}{t^2},\gamma^{\prime}(t)=\dfrac{t-t\ln t-2}{t^3},(t-t\ln t-2)^{\prime}=-\ln t<0\)

\(t-t\ln t-2<-1<0\),从而\(\gamma(t)<\gamma(1)=1\)得证!

posted @ 2024-05-16 20:54  会飞的鱼13  阅读(24)  评论(0)    收藏  举报