关于幂等阵与幂幺阵的专题讨论

幂等阵

$\bf命题:$设$n$阶幂等阵$A$满足$A=A_{1}+\cdots+A_{s}$,且$$r(A)=r(A_{1})+\cdots+r(A_{s})$$

证明:所有的$A_{i}$都相似于一个对角阵,且$A_{i}$的特征值之和等于$A_{i}$的秩

1

$\bf命题:$

$\bf(10北科大八)$设线性空间$V$的线性变换$\sigma$满足${\sigma ^2} = \sigma $,证明:

(1)$V$中向量$\beta$属于$\sigma$的像集$\text{Im}\sigma$当且仅当$\sigma (\beta)=\beta$

(2)$V = \operatorname{Im} \sigma  \oplus {\text{Ker}}\sigma $,且$V$的任一向量的直和分解为$\alpha  = \sigma \left( \alpha  \right) + \left( {\alpha  - \sigma \left( \alpha  \right)} \right)$

(3)对任一直和分解$V = {V_1} \oplus {V_2}$,存在唯一的幂等变换$\sigma$,使得${V_1} = \operatorname{Im} \sigma ,{V_2}{\text{ = Ker}}\sigma $

(4)每个幂等变换都有方阵表示$\left( {\begin{array}{*{20}{c}}E&0 \\ 0&0 \end{array}} \right)$

幂幺阵

$\bf命题:$设$A$为$n$阶对合阵,即${A^2} = E$,则存在正交阵$Q$,使得${Q^{ - 1}}AQ = \left( {\begin{array}{*{20}{c}}{{E_r}}&0 \\ 0&{ - {E_{n - r}}}\end{array}} \right)$ 

1

$\bf命题:$设${A^n} = {E_m}$,则$(E-A)x=0$的解空间的维数为$\frac{1}{n}tr\left( {A + {A^2} +  \cdots  + {A^n}} \right)$

1

$\bf命题:$

$\bf(06中科院)$设$f$为有限维向量空间$V$上的线性变换,且$f^n$是$V$上的恒等变换,这里$n$是某个正整数,设$W = \{ v \in V|f(v) = v\} $,证明:$W$是$V$的一个子空间,且其维数等于线性变换$\left( {f + {f^2} +  \cdots  + {f^n}} \right)/n$的迹

1

附录1(幂等阵)

$\bf定义:$设$A$为$n$阶矩阵,若${A^2} = A$,则称$A$为幂等阵

$\bf命题1:$若$A$为幂等阵,则${A^T},{A^k},E - A$均为幂等阵

 

$\bf命题2:$幂等阵的特征值与行列式只能是$0$或$1$

 

$\bf命题3:$设$A$是特征值全为$0$或$1$的方阵,则$A$为幂等阵的充要条件是$A$可对角化

 

$\bf命题4:$$A$为幂等阵当且仅当$r\left( A \right) + r\left( {E - A} \right) = n$

 

$\bf命题5:$$A$为幂等阵当且仅当${F^n} = N\left( A \right) \oplus N\left( {E - A} \right)$

 

$\bf命题6:$$A$为幂等阵当且仅当存在可逆阵$P$,使得${P^{ - 1}}AP = \left( {\begin{array}{*{20}{c}}{{E_r}}&0\\0&0\end{array}} \right),r = r\left( A \right)$

 

$\bf命题7:$设$A$为秩为$r$的幂等阵,则$tr\left( A \right) = r\left( A \right)$

 

$\bf命题8:$设$A$为秩为$r$的幂等阵,则$\left| {aE + bA} \right| = {\left( {a + b} \right)^r}{a^{n - r}}$

 

$\bf命题9:$任意幂等阵均可分解为对称阵与正定阵之积

$\bf命题10:$设${A_1}, \cdots ,{A_k}$均为$n$阶矩阵,$A = \sum\limits_{i = 1}^k {{A_i}} $,则如下4条件中:

\[\left( 1 \right),\left( 2 \right) \Leftrightarrow \left( 1 \right),\left( 3 \right) \Leftrightarrow \left( 3 \right),\left( 4 \right) \Leftrightarrow \left( 2 \right),\left( 3 \right)\]

$\left( 1 \right){A_i}^2 = {A_i}\left( {i = 1,2, \cdots ,k} \right)$

$\left( 2 \right){A_i}{A_j} = 0\left( {i \ne j} \right),r\left( {{A_i}^2} \right) = r\left( {{A_i}} \right)$

$\left( 3 \right){A^2} = A$

$\left( 4 \right)r\left( A \right) = \sum\limits_{i = 1}^k {r\left( {{A_i}} \right)} $

1

 

 

 

 

 

 

 

posted on 2014-09-13 12:24  142857  阅读(1548)  评论(0编辑  收藏  举报

导航