关于等价标准形的专题讨论

$\bf命题:$任意方阵$A$均可分解为可逆阵$B$与幂等阵$C$之积

1

$\bf命题:$任意方阵$A$均可分解为可逆阵$B$与对称阵$C$之积

1

$\bf命题:$设$A,B \in {P^{n \times n}}$,且$r\left( A \right) + r\left( B \right) \le n$,则存在$n$阶可逆阵$M$,使得$AMB = 0$

1

$\bf命题:$设$A$为$n$阶方阵,则存在$n$阶方阵$B$,使得$A=ABA,B=BAB$

1

$\bf命题:$设$A$为$n$阶矩阵且$ABA=A$有唯一解$B$,证明:$BAB=B$

1

$\bf命题:$设$A$是秩为$r$的$m \times r$矩阵$\left( {m > r} \right)$,$B$为$r \times s$矩阵,则存在可逆阵$P$,使得$PA$的后$m-r$行全为零

1

$\bf命题:$设$T \in L\left( {V,n,F} \right)$,则存在$S \in L\left( {V,n,F} \right)$,使得$TST = T$

1

$\bf命题:$设$A \in {M_{m \times n}}\left( F \right),B \in {M_{n \times m}}\left( F \right),m \ge n,\lambda \ne 0$,则

\[{\rm{ }}\left| {\lambda {E_m} - AB} \right| = {\lambda ^{m - n}}\left| {\lambda {E_n} - BA} \right|\]

1

$\bf命题:$设$A,B,C$为$n$阶矩阵,且$AC=CB$,$r\left( C \right) = r$,证明:$A$与$B$至少有$r$个相同特征值

1

$\bf命题:$设${\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}$为${V_n}\left( F \right)$的一个基,$A \in {M_{n \times s}}\left( F \right)$,且\[\left( {{\beta _1},{\beta _2}, \cdots ,{\beta _s}} \right) = \left( {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}} \right)A\],证明:$\dim L\left( {{\beta _1},{\beta _2}, \cdots ,{\beta _s}} \right) = r\left( A \right)$

1

$\bf命题:$设$A,B$为$n$阶矩阵,若$r\left( {AB} \right) = r\left( {BA} \right)$对任意的$B$成立,则$A = 0$或$A$可逆

1

$\bf命题:$设$P \in {F^{r \times m}},Q \in {F^{n \times s}}$,若对任意的$A \in {F^{m \times n}}$,都有$PAQ=0$,证明:$P=0或Q=0$

1

$\bf命题:$设$A \in {M_m}\left( F \right),C \in {M_n}\left( F \right)$,若对于$B \in {M_{mn}}\left( F \right)$,有$r\left( {\begin{array}{*{20}{c}}A&B \\ 0&C \end{array}} \right) = r\left( A \right) + r\left( C \right)$,证明:$A或C$可逆

1

$\bf命题:$若$矩阵{A_{m \times n}}{B_{n \times p}}{C_{p \times q}}$的秩对一切秩$1$的矩阵$B$总为$1$,则$A$为列满秩,且$C$为行满秩

1

$(04浙大七)$设$V = {P^{n \times n}}$看成数域$P$上的线性空间,取定$A,B,C,D \in {P^{n \times n}}$,对任意$X \in {P^{n \times n}}$,令\[\sigma \left( X \right) = AXB + CX + XD\]

证明:$(1)$$\sigma $是$V$上的线性变换  $(2)$当$C = D = 0$时,$\sigma $可逆的充要条件是$\left| {AB} \right| \ne 0$

$(05浙大四)$设$A$为$n\times s$矩阵,证明:秩$(A)=r$的充要条件是存在两个列满秩的矩阵$B_{n\times r}$和$C_{s\times r}$,使得$A=BC^T$

1

$(09江西师大)$设$A$为$m\times r$矩阵,证明:$A$列满秩的充要条件是存在$r\times m$的矩阵$B$,使得$BA=E_r$

1

$(12川大)$设$A,B$为数域$F$上$m\times n$矩阵,证明:当$m \ne n$时,由$f(X)=AXB$给出的从${M_{n \times m}}\left( F \right)$到${M_{m \times n}}\left( F \right)$的线性映射$f$是不可逆的

1   2

$(05川大七)$设$M_n(F)$是数域$F$上的$n$阶方阵全体,对任意非零矩阵$A\in M_n(F)$,定义集合${S_A} = \left\{ {XAY|\forall X,Y \in {M_n}\left( F \right)} \right\}$,证明:$S_A=M_n(F)$

$\bf命题:$

附录

$\bf命题:$设$A,B$为同型矩阵且$r(A)=r,r(B)=s$,证明:$r(A+B)=r(A)+r(B)$的充要条件是存在可逆阵$P,Q$,使得

\[A = P\left( {\begin{array}{*{20}{c}}
{{E_r}}&0 \\
0&0
\end{array}} \right)Q,B = P\left( {\begin{array}{*{20}{c}}
0&0 \\
0&{{E_s}}
\end{array}} \right)Q\]其中$r+s$不超过矩阵$A$的行数及列数

1   2

$\bf命题:$设$G$为非零矩阵$A$的一个广义逆,即$AGA=A$,则存在可逆阵$P,Q$,使得

\[A = P\left( {\begin{array}{*{20}{c}}
{{E_r}}&0 \\
0&0
\end{array}} \right)Q,G = {Q^{ - 1}}\left( {\begin{array}{*{20}{c}}
{{E_s}}&0 \\
0&0
\end{array}} \right){P^{ - 1}}\]

1

$\bf命题:$设$A \in {M_n}\left( F \right),r\left( A \right) = r\left( {{A^2}} \right)$,则存在可逆阵$P$,使得$A = P\left( {\begin{array}{*{20}{c}}D&0 \\ 0&0 \end{array}} \right){P^{ - 1}}$,其中$D$为可逆阵

1

$\bf命题:$设$A,B$为$n$阶矩阵,且$BA=A$,$r\left( A \right) =r\left( B \right) $,则${B^2} = B$

1

 

 



 

posted on 2014-09-13 12:23  142857  阅读(906)  评论(0编辑  收藏  举报

导航