关于函数列一致收敛的专题讨论

$\bf命题:$设$f\left( x \right) \in {C^1}\left( { - \infty , + \infty } \right)$,令\[{f_n}\left( x \right) = n\left[ {f\left( {x + \frac{1}{n}} \right) - f\left( x \right)} \right]\]

证明:对任意$x \in \left[ {a,b} \right] \subset \left( { - \infty , + \infty } \right)$,有${f_n}\left( x \right)$一致收敛于$f'\left( x \right)$

参考答案

$\bf命题:$设$f\left( x \right) \in C\left( { - \infty , + \infty } \right)$,令\[{f_n}\left( x \right) = \sum\limits_{k = 0}^{n - 1} {\frac{1}{n}} f\left( {x + \frac{k}{n}} \right)\]

证明:对任意$x \in \left[ {a,b} \right] \subset \left( { - \infty , + \infty } \right)$,有${f_n}\left( x \right)$一致收敛于$\int_0^1 {f\left( {x + t} \right)dt}$

参考答案

$\bf命题:$$\left( \bf{Dini定理} \right)$设函数列$\left\{ {{f_n}\left( x \right)} \right\}$的每一项及其极限函数$f\left( x \right)$

均在$x \in \left[ {a,b} \right]$上连续,且对每个$ x \in \left[ {a,b} \right]$有$\left\{ {{f_n}\left( x \right)} \right\}$为单调数列,则函数列$\left\{ {{f_n}\left( x \right)} \right\}$在$\left[ {a,b} \right]$上一致收敛于${f\left( x \right)}$

方法一

$\bf命题:$

 

 



 

 

posted on 2014-04-17 22:36  142857  阅读(607)  评论(0编辑  收藏  举报

导航