Python 3深度置信网络(DBN)在Tensorflow中的实现MNIST手写数字识别

Deep Learning with TensorFlow IBM Cognitive Class ML0120EN Module 5 - Autoencoders

使用DBN识别手写体 传统的多层感知机或者神经网络的一个问题: 反向传播可能总是导致局部最小值。 当误差表面(error surface)包含了多个凹槽,当你做梯度下降时,你找到的并不是最深的凹槽。 下面你将会看到DBN是怎么解决这个问题的。

深度置信网络

深度置信网络可以通过额外的预训练规程解决局部最小值的问题。 预训练在反向传播之前做完,这样可以使错误率离最优的解不是那么远,也就是我们在最优解的附近。再通过反向传播慢慢地降低错误率。 深度置信网络主要分成两部分。第一部分是多层玻尔兹曼感知机,用于预训练我们的网络。第二部分是前馈反向传播网络,这可以使RBM堆叠的网络更加精细化。

1. 加载必要的深度置信网络库

# urllib is used to download the utils file from deeplearning.net
import urllib.request
response = urllib.request.urlopen('http://deeplearning.net/tutorial/code/utils.py')
content = response.read().decode('utf-8')
target = open('utils.py', 'w')
target.write(content)
target.close()
# Import the math function for calculations
import math
# Tensorflow library. Used to implement machine learning models
import tensorflow as tf
# Numpy contains helpful functions for efficient mathematical calculations
import numpy as np
# Image library for image manipulation
from PIL import Image
# import Image
# Utils file
from utils import tile_raster_images

2. 构建RBM层

RBM的细节参考【https://blog.csdn.net/sinat_28371057/article/details/115795086

​ 为了在Tensorflow中应用DBN, 下面创建一个RBM的类

class RBM(object):
    def __init__(self, input_size, output_size):
        # Defining the hyperparameters
        self._input_size = input_size  # Size of input
        self._output_size = output_size  # Size of output
        self.epochs = 5  # Amount of training iterations
        self.learning_rate = 1.0  # The step used in gradient descent
        self.batchsize = 100  # The size of how much data will be used for training per sub iteration

        # Initializing weights and biases as matrices full of zeroes
        self.w = np.zeros([input_size, output_size], np.float32)  # Creates and initializes the weights with 0
        self.hb = np.zeros([output_size], np.float32)  # Creates and initializes the hidden biases with 0
        self.vb = np.zeros([input_size], np.float32)  # Creates and initializes the visible biases with 0

    # Fits the result from the weighted visible layer plus the bias into a sigmoid curve
    def prob_h_given_v(self, visible, w, hb):
        # Sigmoid
        return tf.nn.sigmoid(tf.matmul(visible, w) + hb)

    # Fits the result from the weighted hidden layer plus the bias into a sigmoid curve
    def prob_v_given_h(self, hidden, w, vb):
        return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

    # Generate the sample probability
    def sample_prob(self, probs):
        return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))

    # Training method for the model
    def train(self, X):
        # Create the placeholders for our parameters
        _w = tf.placeholder("float", [self._input_size, self._output_size])
        _hb = tf.placeholder("float", [self._output_size])
        _vb = tf.placeholder("float", [self._input_size])

        prv_w = np.zeros([self._input_size, self._output_size],
                         np.float32)  # Creates and initializes the weights with 0
        prv_hb = np.zeros([self._output_size], np.float32)  # Creates and initializes the hidden biases with 0
        prv_vb = np.zeros([self._input_size], np.float32)  # Creates and initializes the visible biases with 0

        cur_w = np.zeros([self._input_size, self._output_size], np.float32)
        cur_hb = np.zeros([self._output_size], np.float32)
        cur_vb = np.zeros([self._input_size], np.float32)
        v0 = tf.placeholder("float", [None, self._input_size])

        # Initialize with sample probabilities
        h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))
        v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
        h1 = self.prob_h_given_v(v1, _w, _hb)

        # Create the Gradients
        positive_grad = tf.matmul(tf.transpose(v0), h0)
        negative_grad = tf.matmul(tf.transpose(v1), h1)

        # Update learning rates for the layers
        update_w = _w + self.learning_rate * (positive_grad - negative_grad) / tf.to_float(tf.shape(v0)[0])
        update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0)
        update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)

        # Find the error rate
        err = tf.reduce_mean(tf.square(v0 - v1))

        # Training loop
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            # For each epoch
            for epoch in range(self.epochs):
                # For each step/batch
                for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X), self.batchsize)):
                    batch = X[start:end]
                    # Update the rates
                    cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    prv_w = cur_w
                    prv_hb = cur_hb
                    prv_vb = cur_vb
                error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb})
                print('Epoch: %d' % epoch, 'reconstruction error: %f' % error)
            self.w = prv_w
            self.hb = prv_hb
            self.vb = prv_vb

    # Create expected output for our DBN
    def rbm_outpt(self, X):
        input_X = tf.constant(X)
        _w = tf.constant(self.w)
        _hb = tf.constant(self.hb)
        out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            return sess.run(out)

3. 导入MNIST数据

使用one-hot encoding标注的形式载入MNIST图像数据。

# Getting the MNIST data provided by Tensorflow
from tensorflow.examples.tutorials.mnist import input_data

# Loading in the mnist data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,\
    mnist.test.labels
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

4. 建立DBN

RBM_hidden_sizes = [500, 200 , 50 ] #create 4 layers of RBM with size 785-500-200-50

#Since we are training, set input as training data
inpX = trX

#Create list to hold our RBMs
rbm_list = []

#Size of inputs is the number of inputs in the training set
input_size = inpX.shape[1]

#For each RBM we want to generate
for i, size in enumerate(RBM_hidden_sizes):
    print('RBM: ',i,' ',input_size,'->', size)
    rbm_list.append(RBM(input_size, size))
    input_size = size
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
RBM:  0   784 -> 500
RBM:  1   500 -> 200
RBM:  2   200 -> 50

rbm的类创建好了和数据都已经载入,可以创建DBN。 在这个例子中,我们使用了3个RBM,一个的隐藏层单元个数为500, 第二个RBM的隐藏层个数为200,最后一个为50. 我们想要生成训练数据的深层次表示形式。

5.训练RBM

我们将使用***rbm.train()***开始预训练步骤, 单独训练堆中的每一个RBM,并将当前RBM的输出作为下一个RBM的输入。

#For each RBM in our list
for rbm in rbm_list:
    print('New RBM:')
    #Train a new one
    rbm.train(inpX) 
    #Return the output layer
    inpX = rbm.rbm_outpt(inpX)
New RBM:
Epoch: 0 reconstruction error: 0.061174
Epoch: 1 reconstruction error: 0.052962
Epoch: 2 reconstruction error: 0.049679
Epoch: 3 reconstruction error: 0.047683
Epoch: 4 reconstruction error: 0.045691
New RBM:
Epoch: 0 reconstruction error: 0.035260
Epoch: 1 reconstruction error: 0.030811
Epoch: 2 reconstruction error: 0.028873
Epoch: 3 reconstruction error: 0.027428
Epoch: 4 reconstruction error: 0.026980
New RBM:
Epoch: 0 reconstruction error: 0.059593
Epoch: 1 reconstruction error: 0.056837
Epoch: 2 reconstruction error: 0.055571
Epoch: 3 reconstruction error: 0.053817
Epoch: 4 reconstruction error: 0.054142

现在我们可以将输入数据的学习好的表示转换为有监督的预测,比如一个线性分类器。特别地,我们使用这个浅层神经网络的最后一层的输出对数字分类。

6. 神经网络

下面的类使用了上面预训练好的RBMs实现神经网络。

import numpy as np
import math
import tensorflow as tf


class NN(object):

    def __init__(self, sizes, X, Y):
        # Initialize hyperparameters
        self._sizes = sizes
        self._X = X
        self._Y = Y
        self.w_list = []
        self.b_list = []
        self._learning_rate = 1.0
        self._momentum = 0.0
        self._epoches = 10
        self._batchsize = 100
        input_size = X.shape[1]

        # initialization loop
        for size in self._sizes + [Y.shape[1]]:
            # Define upper limit for the uniform distribution range
            max_range = 4 * math.sqrt(6. / (input_size + size))

            # Initialize weights through a random uniform distribution
            self.w_list.append(
                np.random.uniform(-max_range, max_range, [input_size, size]).astype(np.float32))

            # Initialize bias as zeroes
            self.b_list.append(np.zeros([size], np.float32))
            input_size = size

    # load data from rbm
    def load_from_rbms(self, dbn_sizes, rbm_list):
        # Check if expected sizes are correct
        assert len(dbn_sizes) == len(self._sizes)

        for i in range(len(self._sizes)):
            # Check if for each RBN the expected sizes are correct
            assert dbn_sizes[i] == self._sizes[i]

        # If everything is correct, bring over the weights and biases
        for i in range(len(self._sizes)):
            self.w_list[i] = rbm_list[i].w
            self.b_list[i] = rbm_list[i].hb

    # Training method
    def train(self):
        # Create placeholders for input, weights, biases, output
        _a = [None] * (len(self._sizes) + 2)
        _w = [None] * (len(self._sizes) + 1)
        _b = [None] * (len(self._sizes) + 1)
        _a[0] = tf.placeholder("float", [None, self._X.shape[1]])
        y = tf.placeholder("float", [None, self._Y.shape[1]])

        # Define variables and activation functoin
        for i in range(len(self._sizes) + 1):
            _w[i] = tf.Variable(self.w_list[i])
            _b[i] = tf.Variable(self.b_list[i])
        for i in range(1, len(self._sizes) + 2):
            _a[i] = tf.nn.sigmoid(tf.matmul(_a[i - 1], _w[i - 1]) + _b[i - 1])

        # Define the cost function
        cost = tf.reduce_mean(tf.square(_a[-1] - y))

        # Define the training operation (Momentum Optimizer minimizing the Cost function)
        train_op = tf.train.MomentumOptimizer(
            self._learning_rate, self._momentum).minimize(cost)

        # Prediction operation
        predict_op = tf.argmax(_a[-1], 1)

        # Training Loop
        with tf.Session() as sess:
            # Initialize Variables
            sess.run(tf.global_variables_initializer())

            # For each epoch
            for i in range(self._epoches):

                # For each step
                for start, end in zip(
                        range(0, len(self._X), self._batchsize), range(self._batchsize, len(self._X), self._batchsize)):
                    # Run the training operation on the input data
                    sess.run(train_op, feed_dict={
                        _a[0]: self._X[start:end], y: self._Y[start:end]})

                for j in range(len(self._sizes) + 1):
                    # Retrieve weights and biases
                    self.w_list[j] = sess.run(_w[j])
                    self.b_list[j] = sess.run(_b[j])

                print("Accuracy rating for epoch " + str(i) + ": " + str(np.mean(np.argmax(self._Y, axis=1) == \
                                                                                 sess.run(predict_op, feed_dict={_a[0]: self._X, y: self._Y}))))

7. 运行

nNet = NN(RBM_hidden_sizes, trX, trY)
nNet.load_from_rbms(RBM_hidden_sizes,rbm_list)
nNet.train()
Accuracy rating for epoch 0: 0.46683636363636366
Accuracy rating for epoch 1: 0.6561272727272728
Accuracy rating for epoch 2: 0.7678363636363637
Accuracy rating for epoch 3: 0.8370727272727273
Accuracy rating for epoch 4: 0.8684181818181819
Accuracy rating for epoch 5: 0.885
Accuracy rating for epoch 6: 0.8947636363636363
Accuracy rating for epoch 7: 0.9024909090909091
Accuracy rating for epoch 8: 0.9080363636363636
Accuracy rating for epoch 9: 0.9124181818181818

完整代码

pip install tensorflow==1.13.1

# Import the math function for calculations
import math
# Tensorflow library. Used to implement machine learning models
import tensorflow as tf
# Numpy contains helpful functions for efficient mathematical calculations
import numpy as np
# Image library for image manipulation
# import Image
# Utils file
# Getting the MNIST data provided by Tensorflow
from tensorflow.examples.tutorials.mnist import input_data

""" This file contains different utility functions that are not connected
in anyway to the networks presented in the tutorials, but rather help in
processing the outputs into a more understandable way.

For example ``tile_raster_images`` helps in generating a easy to grasp
image from a set of samples or weights.
"""

import numpy


def scale_to_unit_interval(ndar, eps=1e-8):
    """ Scales all values in the ndarray ndar to be between 0 and 1 """
    ndar = ndar.copy()
    ndar -= ndar.min()
    ndar *= 1.0 / (ndar.max() + eps)
    return ndar


def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0),
                       scale_rows_to_unit_interval=True,
                       output_pixel_vals=True):
    """
    Transform an array with one flattened image per row, into an array in
    which images are reshaped and layed out like tiles on a floor.

    This function is useful for visualizing datasets whose rows are images,
    and also columns of matrices for transforming those rows
    (such as the first layer of a neural net).

    :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
    be 2-D ndarrays or None;
    :param X: a 2-D array in which every row is a flattened image.

    :type img_shape: tuple; (height, width)
    :param img_shape: the original shape of each image

    :type tile_shape: tuple; (rows, cols)
    :param tile_shape: the number of images to tile (rows, cols)

    :param output_pixel_vals: if output should be pixel values (i.e. int8
    values) or floats

    :param scale_rows_to_unit_interval: if the values need to be scaled before
    being plotted to [0,1] or not


    :returns: array suitable for viewing as an image.
    (See:`Image.fromarray`.)
    :rtype: a 2-d array with same dtype as X.

    """

    assert len(img_shape) == 2
    assert len(tile_shape) == 2
    assert len(tile_spacing) == 2

    # The expression below can be re-written in a more C style as
    # follows :
    #
    # out_shape    = [0,0]
    # out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] -
    #                tile_spacing[0]
    # out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] -
    #                tile_spacing[1]
    out_shape = [
        (ishp + tsp) * tshp - tsp
        for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)
    ]

    if isinstance(X, tuple):
        assert len(X) == 4
        # Create an output numpy ndarray to store the image
        if output_pixel_vals:
            out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
                                    dtype='uint8')
        else:
            out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
                                    dtype=X.dtype)

        #colors default to 0, alpha defaults to 1 (opaque)
        if output_pixel_vals:
            channel_defaults = [0, 0, 0, 255]
        else:
            channel_defaults = [0., 0., 0., 1.]

        for i in range(4):
            if X[i] is None:
                # if channel is None, fill it with zeros of the correct
                # dtype
                dt = out_array.dtype
                if output_pixel_vals:
                    dt = 'uint8'
                out_array[:, :, i] = numpy.zeros(
                    out_shape,
                    dtype=dt
                ) + channel_defaults[i]
            else:
                # use a recurrent call to compute the channel and store it
                # in the output
                out_array[:, :, i] = tile_raster_images(
                    X[i], img_shape, tile_shape, tile_spacing,
                    scale_rows_to_unit_interval, output_pixel_vals)
        return out_array

    else:
        # if we are dealing with only one channel
        H, W = img_shape
        Hs, Ws = tile_spacing

        # generate a matrix to store the output
        dt = X.dtype
        if output_pixel_vals:
            dt = 'uint8'
        out_array = numpy.zeros(out_shape, dtype=dt)

        for tile_row in range(tile_shape[0]):
            for tile_col in range(tile_shape[1]):
                if tile_row * tile_shape[1] + tile_col < X.shape[0]:
                    this_x = X[tile_row * tile_shape[1] + tile_col]
                    if scale_rows_to_unit_interval:
                        # if we should scale values to be between 0 and 1
                        # do this by calling the `scale_to_unit_interval`
                        # function
                        this_img = scale_to_unit_interval(
                            this_x.reshape(img_shape))
                    else:
                        this_img = this_x.reshape(img_shape)
                    # add the slice to the corresponding position in the
                    # output array
                    c = 1
                    if output_pixel_vals:
                        c = 255
                    out_array[
                        tile_row * (H + Hs): tile_row * (H + Hs) + H,
                        tile_col * (W + Ws): tile_col * (W + Ws) + W
                    ] = this_img * c
        return out_array

# Class that defines the behavior of the RBM
class RBM(object):
    def __init__(self, input_size, output_size):
        # Defining the hyperparameters
        self._input_size = input_size  # Size of input
        self._output_size = output_size  # Size of output
        self.epochs = 5  # Amount of training iterations
        self.learning_rate = 1.0  # The step used in gradient descent
        self.batchsize = 100  # The size of how much data will be used for training per sub iteration

        # Initializing weights and biases as matrices full of zeroes
        self.w = np.zeros([input_size, output_size], np.float32)  # Creates and initializes the weights with 0
        self.hb = np.zeros([output_size], np.float32)  # Creates and initializes the hidden biases with 0
        self.vb = np.zeros([input_size], np.float32)  # Creates and initializes the visible biases with 0

    # Fits the result from the weighted visible layer plus the bias into a sigmoid curve
    def prob_h_given_v(self, visible, w, hb):
        # Sigmoid
        return tf.nn.sigmoid(tf.matmul(visible, w) + hb)

    # Fits the result from the weighted hidden layer plus the bias into a sigmoid curve
    def prob_v_given_h(self, hidden, w, vb):
        return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

    # Generate the sample probability
    def sample_prob(self, probs):
        return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))

    # Training method for the model
    def train(self, X):
        # Create the placeholders for our parameters
        _w = tf.placeholder("float", [self._input_size, self._output_size])
        _hb = tf.placeholder("float", [self._output_size])
        _vb = tf.placeholder("float", [self._input_size])

        prv_w = np.zeros([self._input_size, self._output_size],
                         np.float32)  # Creates and initializes the weights with 0
        prv_hb = np.zeros([self._output_size], np.float32)  # Creates and initializes the hidden biases with 0
        prv_vb = np.zeros([self._input_size], np.float32)  # Creates and initializes the visible biases with 0

        cur_w = np.zeros([self._input_size, self._output_size], np.float32)
        cur_hb = np.zeros([self._output_size], np.float32)
        cur_vb = np.zeros([self._input_size], np.float32)
        v0 = tf.placeholder("float", [None, self._input_size])

        # Initialize with sample probabilities
        h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))
        v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
        h1 = self.prob_h_given_v(v1, _w, _hb)

        # Create the Gradients
        positive_grad = tf.matmul(tf.transpose(v0), h0)
        negative_grad = tf.matmul(tf.transpose(v1), h1)

        # Update learning rates for the layers
        update_w = _w + self.learning_rate * (positive_grad - negative_grad) / tf.to_float(tf.shape(v0)[0])
        update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0)
        update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)

        # Find the error rate
        err = tf.reduce_mean(tf.square(v0 - v1))

        # Training loop
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            # For each epoch
            for epoch in range(self.epochs):
                # For each step/batch
                for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X), self.batchsize)):
                    batch = X[start:end]
                    # Update the rates
                    cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                    prv_w = cur_w
                    prv_hb = cur_hb
                    prv_vb = cur_vb
                error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb})
                print('Epoch: %d' % epoch, 'reconstruction error: %f' % error)
            self.w = prv_w
            self.hb = prv_hb
            self.vb = prv_vb

    # Create expected output for our DBN
    def rbm_outpt(self, X):
        input_X = tf.constant(X)
        _w = tf.constant(self.w)
        _hb = tf.constant(self.hb)
        out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            return sess.run(out)

class NN(object):

    def __init__(self, sizes, X, Y):
        # Initialize hyperparameters
        self._sizes = sizes
        self._X = X
        self._Y = Y
        self.w_list = []
        self.b_list = []
        self._learning_rate = 1.0
        self._momentum = 0.0
        self._epoches = 10
        self._batchsize = 100
        input_size = X.shape[1]

        # initialization loop
        for size in self._sizes + [Y.shape[1]]:
            # Define upper limit for the uniform distribution range
            max_range = 4 * math.sqrt(6. / (input_size + size))

            # Initialize weights through a random uniform distribution
            self.w_list.append(
                np.random.uniform(-max_range, max_range, [input_size, size]).astype(np.float32))

            # Initialize bias as zeroes
            self.b_list.append(np.zeros([size], np.float32))
            input_size = size

    # load data from rbm
    def load_from_rbms(self, dbn_sizes, rbm_list):
        # Check if expected sizes are correct
        assert len(dbn_sizes) == len(self._sizes)

        for i in range(len(self._sizes)):
            # Check if for each RBN the expected sizes are correct
            assert dbn_sizes[i] == self._sizes[i]

        # If everything is correct, bring over the weights and biases
        for i in range(len(self._sizes)):
            self.w_list[i] = rbm_list[i].w
            self.b_list[i] = rbm_list[i].hb

    # Training method
    def train(self):
        # Create placeholders for input, weights, biases, output
        _a = [None] * (len(self._sizes) + 2)
        _w = [None] * (len(self._sizes) + 1)
        _b = [None] * (len(self._sizes) + 1)
        _a[0] = tf.placeholder("float", [None, self._X.shape[1]])
        y = tf.placeholder("float", [None, self._Y.shape[1]])

        # Define variables and activation functoin
        for i in range(len(self._sizes) + 1):
            _w[i] = tf.Variable(self.w_list[i])
            _b[i] = tf.Variable(self.b_list[i])
        for i in range(1, len(self._sizes) + 2):
            _a[i] = tf.nn.sigmoid(tf.matmul(_a[i - 1], _w[i - 1]) + _b[i - 1])

        # Define the cost function
        cost = tf.reduce_mean(tf.square(_a[-1] - y))

        # Define the training operation (Momentum Optimizer minimizing the Cost function)
        train_op = tf.train.MomentumOptimizer(
            self._learning_rate, self._momentum).minimize(cost)

        # Prediction operation
        predict_op = tf.argmax(_a[-1], 1)

        # Training Loop
        with tf.Session() as sess:
            # Initialize Variables
            sess.run(tf.global_variables_initializer())

            # For each epoch
            for i in range(self._epoches):

                # For each step
                for start, end in zip(
                        range(0, len(self._X), self._batchsize), range(self._batchsize, len(self._X), self._batchsize)):
                    # Run the training operation on the input data
                    sess.run(train_op, feed_dict={
                        _a[0]: self._X[start:end], y: self._Y[start:end]})

                for j in range(len(self._sizes) + 1):
                    # Retrieve weights and biases
                    self.w_list[j] = sess.run(_w[j])
                    self.b_list[j] = sess.run(_b[j])

                print("Accuracy rating for epoch " + str(i) + ": " + str(np.mean(np.argmax(self._Y, axis=1) == \
                                                                                 sess.run(predict_op, feed_dict={_a[0]: self._X, y: self._Y}))))


if __name__ == '__main__':
    # Loading in the mnist data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

    trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,\
        mnist.test.labels

    RBM_hidden_sizes = [500, 200, 50]  # create 4 layers of RBM with size 785-500-200-50
    # Since we are training, set input as training data
    inpX = trX
    # Create list to hold our RBMs
    rbm_list = []
    # Size of inputs is the number of inputs in the training set
    input_size = inpX.shape[1]

    # For each RBM we want to generate
    for i, size in enumerate(RBM_hidden_sizes):
        print('RBM: ', i, ' ', input_size, '->', size)
        rbm_list.append(RBM(input_size, size))
        input_size = size

    # For each RBM in our list
    for rbm in rbm_list:
        print('New RBM:')
        # Train a new one
        rbm.train(inpX)
        # Return the output layer
        inpX = rbm.rbm_outpt(inpX)

    nNet = NN(RBM_hidden_sizes, trX, trY)
    nNet.load_from_rbms(RBM_hidden_sizes, rbm_list)
    nNet.train()

任何程序错误,以及技术疑问或需要解答的,请扫码添加作者VX::1755337994

posted @ 2021-04-17 14:49  luyanjie  阅读(214)  评论(0编辑  收藏  举报