分布式监控系统开发【day37】:监控数据如何存储(七)
一、如何存储

二、目录结构

三、代码调用逻辑关系

四、实现代码
1、data_optimization
1、存筛选出来符合条件的数据
def get_data_slice(self,lastest_data_key,optimization_interval):
'''
:param optimization_interval: e.g: 600, means get latest 10 mins real data from redis
:return:
'''
all_real_data = self.redis_conn_obj.lrange(lastest_data_key,1,-1)
#print("get data range of:",lastest_data_key,optimization_interval)
#print("get data range of:",all_real_data[-1])
data_set = [] #存筛选出来符合条件的数据
for item in all_real_data:
#print(json.loads(item))
data = json.loads(item.decode())
if len(data) ==2:
#print("real data item:",data[0],data[1])
service_data, last_save_time = data
#print('time:',time.time(), time.time()- last_save_time, optimization_interval)
if time.time() - last_save_time <= optimization_interval:# fetch this data point out
#print(time.time()- last_save_time, optimization_interval)
data_set.append(data)
else:
pass
#print('data set:--->',data_set)
return data_set
2、优化筛选出来的数据
def process_and_save(self):
'''
processing data and save into redis
:return:
'''
print("\033[42;1m---service data-----------------------\033[0m")
#print( self.client_id,self.service_name,self.data)
if self.data['status'] ==0:# service data is valid
for key,data_series_val in settings.STATUS_DATA_OPTIMIZATION.items():
data_series_optimize_interval,max_data_point = data_series_val
data_series_key_in_redis = "StatusData_%s_%s_%s" %(self.client_id,self.service_name,key)
#print(data_series_key_in_redis,data_series_val)
last_point_from_redis = self.redis_conn_obj.lrange(data_series_key_in_redis,-1,-1)
if not last_point_from_redis: #this key is not exist in redis
# 第一次汇报时会执行这段
#so initialize a new key ,the first data point in the data set will only be used to identify that when \
#the data got saved last time
self.redis_conn_obj.rpush(data_series_key_in_redis,json.dumps([None,time.time()] ))
if data_series_optimize_interval == 0:#this dataset is for unoptimized data, only the latest data no need to be optimized
self.redis_conn_obj.rpush(data_series_key_in_redis,json.dumps([self.data, time.time()]))
#不需要优化,直接存
else: #data might needs to be optimized
#print("*****>>",self.redis_conn_obj.lrange(data_series_key_in_redis,-2,-1))
last_point_data,last_point_save_time = \
json.loads(self.redis_conn_obj.lrange(data_series_key_in_redis,-1,-1)[0].decode())
if time.time() - last_point_save_time >= data_series_optimize_interval: # reached the data point update interval ,
lastest_data_key_in_redis = "StatusData_%s_%s_latest" %(self.client_id,self.service_name)
print("calulating data for key:\033[31;1m%s\033[0m" %data_series_key_in_redis )
#最近n分钟的数据 已经取到了,放到了data_set里
data_set = self.get_data_slice(lastest_data_key_in_redis,data_series_optimize_interval) #拿到要优化的数据
print('--------------------------len dataset :',len(data_set))
if len(data_set)>0:
#接下来拿这个data_set交给下面这个方法,让它算出优化的结果 来
optimized_data = self.get_optimized_data(data_series_key_in_redis, data_set)
if optimized_data:
self.save_optimized_data(data_series_key_in_redis, optimized_data)
#同时确保数据在redis中的存储数量不超过settings中指定 的值
if self.redis_conn_obj.llen(data_series_key_in_redis) >= max_data_point:
self.redis_conn_obj.lpop(data_series_key_in_redis) #删除最旧的一个数据
#self.redis_conn_obj.ltrim(data_series_key_in_redis,0,data_series_val[1])
else:
print("report data is invalid::",self.data)
raise ValueError
3、把数据存储到redis
def save_optimized_data(self,data_series_key_in_redis, optimized_data):
'''
save the optimized data into db
:param optimized_data:
:return:
'''
self.redis_conn_obj.rpush(data_series_key_in_redis, json.dumps([optimized_data, time.time()]))
4、存储临时数据并计算最大值、最小值、平均值
1 def get_optimized_data(self,data_set_key, raw_service_data): 2 ''' 3 calculate out avg,max,min,mid value from raw service data set 4 :param data_set_key: where the optimized data needed to save to in redis db 5 :param raw_service_data: raw service data data list 6 :return: 7 ''' 8 #index_init =[avg,max,min,mid] 9 print("get_optimized_data:",raw_service_data[0] ) 10 service_data_keys = raw_service_data[0][0].keys() #[iowait, idle,system...] 11 first_service_data_point = raw_service_data[0][0] # use this to build up a new empty dic 12 #print("--->",service_data_keys) 13 optimized_dic = {} #set a empty dic, will save optimized data later 14 if 'data' not in service_data_keys: #means this dic has no subdic, works for service like cpu,memory 15 for key in service_data_keys: 16 optimized_dic[key] = [] 17 #optimized_dic = optimized_dic.fromkeys(first_service_data_point,[]) 18 tmp_data_dic = copy.deepcopy(optimized_dic) #为了临时存最近n分钟的数据 ,把它们按照每个指标 都 搞成一个一个列表 ,来存最近N分钟的数据 19 print("tmp data dic:",tmp_data_dic) 20 for service_data_item,last_save_time in raw_service_data: #loop 最近n分钟的数据 21 #print(service_data_item) 22 for service_index,v in service_data_item.items(): #loop 每个数据点的指标service_index=iowait , v=33 23 #print(service_index,v) 24 try: 25 tmp_data_dic[service_index].append(round(float(v),2)) #把这个点的当前这个指标 的值 添加到临时dict中 26 except ValueError as e: 27 pass 28 #print(service_data_item,last_save_time) 29 #算临时字典里每个指标数据的平均值,最大值。。。,然后存到 optimized_dic 里 30 for service_k,v_list in tmp_data_dic.items(): 31 print(service_k, v_list) 32 avg_res = self.get_average(v_list) 33 max_res = self.get_max(v_list) 34 min_res = self.get_min(v_list) 35 mid_res = self.get_mid(v_list) 36 optimized_dic[service_k]= [avg_res,max_res,min_res,mid_res] 37 print(service_k, optimized_dic[service_k]) 38 39 else: # has sub dic inside key 'data', works for a service has multiple independent items, like many ethernet,disks... 40 #print("**************>>>",first_service_data_point ) 41 for service_item_key,v_dic in first_service_data_point['data'].items(): 42 #service_item_key 相当于lo,eth0,... , v_dic ={ t_in:333,t_out:3353} 43 optimized_dic[service_item_key] = {} 44 for k2,v2 in v_dic.items(): 45 optimized_dic[service_item_key][k2] = [] #{etho0:{t_in:[],t_out:[]}} 46 47 tmp_data_dic = copy.deepcopy(optimized_dic) 48 if tmp_data_dic: #some times this tmp_data_dic might be empty due to client report err 49 print('tmp data dic:', tmp_data_dic) 50 for service_data_item,last_save_time in raw_service_data:#loop最近n分钟数据 51 for service_index,val_dic in service_data_item['data'].items(): 52 #print(service_index,val_dic) 53 #service_index这个值 相当于eth0,eth1... 54 for service_item_sub_key, val in val_dic.items(): 55 #上面这个service_item_sub_key相当于t_in,t_out 56 #if service_index == 'lo': 57 #print(service_index,service_item_sub_key,val) 58 tmp_data_dic[service_index][service_item_sub_key].append(round(float(val),2)) 59 #上面的service_index变量相当于 eth0... 60 for service_k,v_dic in tmp_data_dic.items(): 61 for service_sub_k,v_list in v_dic.items(): 62 print(service_k, service_sub_k, v_list) 63 avg_res = self.get_average(v_list) 64 max_res = self.get_max(v_list) 65 min_res = self.get_min(v_list) 66 mid_res = self.get_mid(v_list) 67 optimized_dic[service_k][service_sub_k] = [avg_res,max_res,min_res,mid_res] 68 print(service_k, service_sub_k, optimized_dic[service_k][service_sub_k]) 69 70 else: 71 print("\033[41;1mMust be sth wrong with client report data\033[0m") 72 print("optimized empty dic:", optimized_dic) 73 74 return optimized_dic
5、获取平均值
def get_average(self,data_set):
'''
calc the avg value of data set
:param data_set:
:return:
'''
if len(data_set) >0:
return round(sum(data_set) /len(data_set),2)
else:
return 0
6、获取最大值
def get_max(self,data_set):
'''
calc the max value of the data set
:param data_set:
:return:
'''
if len(data_set) >0:
return max(data_set)
else:
return 0
7、获取最小值
def get_min(self,data_set):
'''
calc the minimum value of the data set
:param data_set:
:return:
'''
if len(data_set) >0:
return min(data_set)
else:
return 0
8、获取中位数
def get_mid(self,data_set):
'''
calc the mid value of the data set
:param data_set:
:return:
'''
data_set.sort()
#[1,4,99,32,8,9,4,5,9]
#[1,3,5,7,9,22,54,77]
if len(data_set) >0:
return data_set[ int(len(data_set)/2) ]
else:
return 0
9、完整代码
1 #from s15CrazyMonitor import settings 2 from django.conf import settings 3 import time ,json 4 import copy 5 6 class DataStore(object): 7 ''' 8 processing the client reported service data , do some data optimiaztion and save it into redis DB 9 ''' 10 def __init__(self, client_id,service_name, data,redis_obj): 11 ''' 12 13 :param client_id: 14 :param service_name: 15 :param data: the client reported service clean data , 16 :return: 17 ''' 18 self.client_id = client_id 19 self.service_name = service_name 20 self.data = data 21 self.redis_conn_obj = redis_obj 22 self.process_and_save() 23 24 def get_data_slice(self,lastest_data_key,optimization_interval): 25 ''' 26 :param optimization_interval: e.g: 600, means get latest 10 mins real data from redis 27 :return: 28 ''' 29 all_real_data = self.redis_conn_obj.lrange(lastest_data_key,1,-1) 30 #print("get data range of:",lastest_data_key,optimization_interval) 31 #print("get data range of:",all_real_data[-1]) 32 data_set = [] #存筛选出来符合条件的数据 33 for item in all_real_data: 34 #print(json.loads(item)) 35 data = json.loads(item.decode()) 36 if len(data) ==2: 37 #print("real data item:",data[0],data[1]) 38 service_data, last_save_time = data 39 #print('time:',time.time(), time.time()- last_save_time, optimization_interval) 40 if time.time() - last_save_time <= optimization_interval:# fetch this data point out 41 #print(time.time()- last_save_time, optimization_interval) 42 data_set.append(data) 43 else: 44 pass 45 #print('data set:--->',data_set) 46 return data_set 47 48 def process_and_save(self): 49 ''' 50 processing data and save into redis 51 :return: 52 ''' 53 print("\033[42;1m---service data-----------------------\033[0m") 54 #print( self.client_id,self.service_name,self.data) 55 if self.data['status'] ==0:# service data is valid 56 for key,data_series_val in settings.STATUS_DATA_OPTIMIZATION.items(): 57 data_series_optimize_interval,max_data_point = data_series_val 58 data_series_key_in_redis = "StatusData_%s_%s_%s" %(self.client_id,self.service_name,key) 59 #print(data_series_key_in_redis,data_series_val) 60 last_point_from_redis = self.redis_conn_obj.lrange(data_series_key_in_redis,-1,-1) 61 if not last_point_from_redis: #this key is not exist in redis 62 # 第一次汇报时会执行这段 63 #so initialize a new key ,the first data point in the data set will only be used to identify that when \ 64 #the data got saved last time 65 self.redis_conn_obj.rpush(data_series_key_in_redis,json.dumps([None,time.time()] )) 66 67 if data_series_optimize_interval == 0:#this dataset is for unoptimized data, only the latest data no need to be optimized 68 self.redis_conn_obj.rpush(data_series_key_in_redis,json.dumps([self.data, time.time()])) 69 #不需要优化,直接存 70 else: #data might needs to be optimized 71 #print("*****>>",self.redis_conn_obj.lrange(data_series_key_in_redis,-2,-1)) 72 last_point_data,last_point_save_time = \ 73 json.loads(self.redis_conn_obj.lrange(data_series_key_in_redis,-1,-1)[0].decode()) 74 75 if time.time() - last_point_save_time >= data_series_optimize_interval: # reached the data point update interval , 76 lastest_data_key_in_redis = "StatusData_%s_%s_latest" %(self.client_id,self.service_name) 77 print("calulating data for key:\033[31;1m%s\033[0m" %data_series_key_in_redis ) 78 #最近n分钟的数据 已经取到了,放到了data_set里 79 80 data_set = self.get_data_slice(lastest_data_key_in_redis,data_series_optimize_interval) #拿到要优化的数据 81 print('--------------------------len dataset :',len(data_set)) 82 if len(data_set)>0: 83 #接下来拿这个data_set交给下面这个方法,让它算出优化的结果 来 84 optimized_data = self.get_optimized_data(data_series_key_in_redis, data_set) 85 if optimized_data: 86 self.save_optimized_data(data_series_key_in_redis, optimized_data) 87 #同时确保数据在redis中的存储数量不超过settings中指定 的值 88 if self.redis_conn_obj.llen(data_series_key_in_redis) >= max_data_point: 89 self.redis_conn_obj.lpop(data_series_key_in_redis) #删除最旧的一个数据 90 #self.redis_conn_obj.ltrim(data_series_key_in_redis,0,data_series_val[1]) 91 else: 92 print("report data is invalid::",self.data) 93 raise ValueError 94 95 def save_optimized_data(self,data_series_key_in_redis, optimized_data): 96 ''' 97 save the optimized data into db 98 :param optimized_data: 99 :return: 100 ''' 101 self.redis_conn_obj.rpush(data_series_key_in_redis, json.dumps([optimized_data, time.time()]) ) 102 103 def get_optimized_data(self,data_set_key, raw_service_data): 104 ''' 105 calculate out avg,max,min,mid value from raw service data set 106 :param data_set_key: where the optimized data needed to save to in redis db 107 :param raw_service_data: raw service data data list 108 :return: 109 ''' 110 #index_init =[avg,max,min,mid] 111 print("get_optimized_data:",raw_service_data[0] ) 112 service_data_keys = raw_service_data[0][0].keys() #[iowait, idle,system...] 113 first_service_data_point = raw_service_data[0][0] # use this to build up a new empty dic 114 #print("--->",service_data_keys) 115 optimized_dic = {} #set a empty dic, will save optimized data later 116 if 'data' not in service_data_keys: #means this dic has no subdic, works for service like cpu,memory 117 for key in service_data_keys: 118 optimized_dic[key] = [] 119 #optimized_dic = optimized_dic.fromkeys(first_service_data_point,[]) 120 tmp_data_dic = copy.deepcopy(optimized_dic) #为了临时存最近n分钟的数据 ,把它们按照每个指标 都 搞成一个一个列表 ,来存最近N分钟的数据 121 print("tmp data dic:",tmp_data_dic) 122 for service_data_item,last_save_time in raw_service_data: #loop 最近n分钟的数据 123 #print(service_data_item) 124 for service_index,v in service_data_item.items(): #loop 每个数据点的指标service_index=iowait , v=33 125 #print(service_index,v) 126 try: 127 tmp_data_dic[service_index].append(round(float(v),2)) #把这个点的当前这个指标 的值 添加到临时dict中 128 except ValueError as e: 129 pass 130 #print(service_data_item,last_save_time) 131 #算临时字典里每个指标数据的平均值,最大值。。。,然后存到 optimized_dic 里 132 for service_k,v_list in tmp_data_dic.items(): 133 print(service_k, v_list) 134 avg_res = self.get_average(v_list) 135 max_res = self.get_max(v_list) 136 min_res = self.get_min(v_list) 137 mid_res = self.get_mid(v_list) 138 optimized_dic[service_k]= [avg_res,max_res,min_res,mid_res] 139 print(service_k, optimized_dic[service_k]) 140 141 else: # has sub dic inside key 'data', works for a service has multiple independent items, like many ethernet,disks... 142 #print("**************>>>",first_service_data_point ) 143 for service_item_key,v_dic in first_service_data_point['data'].items(): 144 #service_item_key 相当于lo,eth0,... , v_dic ={ t_in:333,t_out:3353} 145 optimized_dic[service_item_key] = {} 146 for k2,v2 in v_dic.items(): 147 optimized_dic[service_item_key][k2] = [] #{etho0:{t_in:[],t_out:[]}} 148 149 tmp_data_dic = copy.deepcopy(optimized_dic) 150 if tmp_data_dic: #some times this tmp_data_dic might be empty due to client report err 151 print('tmp data dic:', tmp_data_dic) 152 for service_data_item,last_save_time in raw_service_data:#loop最近n分钟数据 153 for service_index,val_dic in service_data_item['data'].items(): 154 #print(service_index,val_dic) 155 #service_index这个值 相当于eth0,eth1... 156 for service_item_sub_key, val in val_dic.items(): 157 #上面这个service_item_sub_key相当于t_in,t_out 158 #if service_index == 'lo': 159 #print(service_index,service_item_sub_key,val) 160 tmp_data_dic[service_index][service_item_sub_key].append(round(float(val),2)) 161 #上面的service_index变量相当于 eth0... 162 for service_k,v_dic in tmp_data_dic.items(): 163 for service_sub_k,v_list in v_dic.items(): 164 print(service_k, service_sub_k, v_list) 165 avg_res = self.get_average(v_list) 166 max_res = self.get_max(v_list) 167 min_res = self.get_min(v_list) 168 mid_res = self.get_mid(v_list) 169 optimized_dic[service_k][service_sub_k] = [avg_res,max_res,min_res,mid_res] 170 print(service_k, service_sub_k, optimized_dic[service_k][service_sub_k]) 171 172 else: 173 print("\033[41;1mMust be sth wrong with client report data\033[0m") 174 print("optimized empty dic:", optimized_dic) 175 176 return optimized_dic 177 178 def get_average(self,data_set): 179 ''' 180 calc the avg value of data set 181 :param data_set: 182 :return: 183 ''' 184 if len(data_set) >0: 185 return round(sum(data_set) /len(data_set),2) 186 else: 187 return 0 188 189 def get_max(self,data_set): 190 ''' 191 calc the max value of the data set 192 :param data_set: 193 :return: 194 ''' 195 if len(data_set) >0: 196 return max(data_set) 197 else: 198 return 0 199 200 def get_min(self,data_set): 201 ''' 202 calc the minimum value of the data set 203 :param data_set: 204 :return: 205 ''' 206 if len(data_set) >0: 207 return min(data_set) 208 else: 209 return 0 210 def get_mid(self,data_set): 211 ''' 212 calc the mid value of the data set 213 :param data_set: 214 :return: 215 ''' 216 data_set.sort() 217 #[1,4,99,32,8,9,4,5,9] 218 #[1,3,5,7,9,22,54,77] 219 if len(data_set) >0: 220 return data_set[ int(len(data_set)/2) ] 221 else: 222 return 0
2、redis_conn
import redis
def redis_conn(django_settings):
#print(django_settings.REDIS_CONN)
pool = redis.ConnectionPool(host=django_settings.REDIS_CONN['HOST'],
port=django_settings.REDIS_CONN['PORT'],
db=django_settings.REDIS_CONN['DB'])
r = redis.Redis(connection_pool=pool)
return r
3、api_views
1 from django.shortcuts import render,HttpResponse 2 import json 3 from django.views.decorators.csrf import csrf_exempt 4 from monitor.backends import data_optimization 5 from monitor.backends import redis_conn 6 from django.conf import settings 7 8 9 REDIS_OBJ = redis_conn.redis_conn(settings) 10 11 print(REDIS_OBJ.set("test",32333)) 12 13 14 from monitor.serializer import ClientHandler 15 # Create your views here. 16 17 18 def client_config(request,client_id): 19 20 config_obj = ClientHandler(client_id) 21 config = config_obj.fetch_configs() 22 23 if config: 24 return HttpResponse(json.dumps(config)) 25 @csrf_exempt 26 def service_report(request): 27 print("client data:",request.POST) 28 29 if request.method == 'POST': 30 #REDIS_OBJ.set("test_alex",'hahaha') 31 try: 32 print('host=%s, service=%s' %(request.POST.get('client_id'),request.POST.get('service_name') ) ) 33 data = json.loads(request.POST['data']) 34 #print(data) 35 #StatusData_1_memory_latest 36 client_id = request.POST.get('client_id') 37 service_name = request.POST.get('service_name') 38 #把数据存下来 39 data_saveing_obj = data_optimization.DataStore(client_id,service_name,data,REDIS_OBJ) 40 41 #redis_key_format = "StatusData_%s_%s_latest" %(client_id,service_name) 42 #data['report_time'] = time.time() 43 #REDIS_OBJ.lpush(redis_key_format,json.dumps(data)) 44 45 except IndexError as e: 46 print('----->err:',e) 47 48 return HttpResponse(json.dumps("---report success---"))
4、settings
REDIS_CONN = {
'HOST':'192.168.16.126',
'PORT':6379,
'DB':0,
}
STATUS_DATA_OPTIMIZATION = {
'latest':[0,20], #0 存储真实数据,600个点
'10mins':[600,4320], #1m, 每600s进行一次优化,存最大600个点
'30mins':[1800,4320],#3m
'60mins':[3600,8760], #365days
}
五、测试截图
0、获取所有的key

1、已经有key列表说明数据写到redis

2、cpu已经有2个数据了

3、控制台获取到数据

4、删除左边第一个值更新最后一个值

已经更新

5、redis常用命令操作

作者:罗阿红
出处:http://www.cnblogs.com/luoahong/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。

浙公网安备 33010602011771号