摘要:如今的智能个人助理,如Apple Siri、Google Now和Microsoft Cortana,都是在云端进行计算的。这种仅限云计算的方法需要通过无线网络将大量数据发送到云计算,并给数据中心产生了巨大的计算压力。然而,随着移动设备中的计算资源变得更加强大和高效,出现了这样的问题:这种只使用云计算的处理是否值得推进,以及将部分或全部计算推到边缘的移动设备上意味着什么。
阅读全文
摘要:最近的研究表明,在机器学习的背景下,去中心化算法比中心化算法能提供更好的性能。这两种方法的主要区别在于它们不同的通信模式,它们都容易在异构环境中性能下降。尽管人们一直致力于支持中心化算法来对抗异构性,但在去中心化算法中很少有人涉及到这个问题。
阅读全文
摘要:郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文。 Abstract 移动应用程序已经成为我们日常生活中不可或缺的一部分,但许多应用程序的设计都不具备能源意识,因此它们可能会以浪费的方式消耗移动设备上有限的资源。盲目地限制大量的资源使用,在
阅读全文
摘要:能量收集技术为未来的物联网应用提供了一个很有前景的平台。然而,由于这些设备中的通信非常昂贵,应用程序将需要“超出边缘”的推理,以避免在无意义的通信上浪费宝贵的能量。我们的结果表明,应用程序性能对推理精度非常敏感。不幸的是,精确的推理需要大量的计算和内存,而能量收集系统的资源严重受限。此外,能量收集系统间歇运行,经常发生电力故障,这会破坏结果,阻碍前进。
阅读全文