基于布谷鸟搜索算法的分布式电源多目标选址定容
基于布谷鸟搜索算法(Cuckoo Search, CSA)的分布式电源(DG)多目标选址定容优化MATLAB实现:
一、多目标优化模型构建
1. 目标函数体系
\(\begin{cases} \min \quad C_{total} = C_{inv} + C_{loss} + C_{env} \\ \min \quad V_{dev} = \max_{k} \left| \Delta U_k \right| \\ \max \quad P_{DG} = \sum_{i=1}^{n} P_{DG,i} \\ \end{cases}\)
- 经济成本:
\(C_{inv} = \sum (C_{unit} \cdot P_{DG,i}) + C_{om} \cdot T\)
\(C_{loss} = \sum_{t=1}^{T} \sum_{(m,n)} G_{mn}(V_m^2 + V_n^2 - 2V_mV_n\cos\theta_{mn})\) - 环境成本:
\(C_{env} = \sum \lambda_{CO_2} \cdot E_{DG,i}\) - 电压偏差:
\(\Delta U_k = \frac{P_{DG,k}R_k + Q_{DG,k}X_k}{V_k^2}\)
2. 约束条件
- 功率平衡:
\(P_{DG,i} + P_{grid} = \sum_{j=1}^{n} P_{load,j} + P_{loss}\) - 电压限制:
\(V_{min} \leq V_k \leq V_{max} \quad \forall k\) - DG容量限制:
\(0 \leq P_{DG,i} \leq P_{DG,max,i}\) - 线路容量限制:
\(S_{k} \leq S_{k,max}\)
二、布谷鸟算法改进策略
1. 莱维飞行优化
function new_nest = levy_flight(nest, alpha)
beta = 1.5; % Levy指数
sigma = (gamma(1+beta)*sin(pi*beta/2)/(gamma((3+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
step = alpha * randn(size(nest)) .* sigma;
new_nest = nest + step;
end
2. 自适应发现概率
$p_a = p_{a0} \cdot e^{-\lambda \cdot f} \quad (\lambda=0.1) $
- 初始发现概率:\(p_{a0}=0.25\)
- 适应度函数:\(f = \frac{C_{total}}{\max(C_{total})}\)
3. 多目标Pareto前沿
% 非支配排序
function [rank, front] = non_dominated_sort(pop)
n = numel(pop);
F = cell(n,1);
for i = 1:n
F{i} = [];
for j = 1:n
if dominates(pop(i), pop(j))
F{i} = [F{i}, j];
end
end
end
% 前沿划分
front = {};
current_front = 1;
while ~isempty(F{current_front})
next_front = [];
for i = F{current_front}
for j = F{i}
if isempty(F{j})
continue;
end
F{j} = setdiff(F{j}, i);
if isempty(F{j})
next_front = [next_front, j];
end
end
end
front{current_front} = next_front;
current_front = current_front + 1;
end
end
三、MATLAB实现流程
参考代码 布谷鸟DG规划 youwenfan.com/contentcna/66016.html
1. 初始化参数
% 系统参数
n_dg = 5; % DG数量
n_bus = 33; % 节点数
v_min = 0.95; v_max = 1.05; % 电压上下限
p_min = 0.1; p_max = 2.0; % DG容量范围(MW)
% 算法参数
n_nest = 50; % 鸟巢数量
pa = 0.25; % 发现概率
max_iter = 200; % 最大迭代
alpha = 0.01; % 步长因子
2. 种群初始化
% 随机生成初始解
pop = struct('pos',{}, 'cost',{});
for i = 1:n_nest
pop(i).pos = randi([1,n_bus],1,n_dg); % 选址
pop(i).cap = p_min + (p_max-p_min)*rand(1,n_dg); % 定容
pop(i).cost = evaluate(pop(i).pos, pop(i).cap); % 计算目标函数
end
3. 主循环优化
for iter = 1:max_iter
% 莱维飞行生成新解
for i = 1:n_nest
new_pos = levy_flight(pop(i).pos, alpha);
new_cap = pop(i).cap + 0.1*(p_max-p_min)*randn(1,n_dg);
new_cap = max(min(new_cap,p_max),p_min);
new_cost = evaluate(new_pos, new_cap);
% 接受准则
if dominates(new_cost, pop(i).cost)
pop(i).pos = new_pos;
pop(i).cap = new_cap;
pop(i).cost = new_cost;
end
end
% 发现概率更新
pa = pa * exp(-0.1*iter/max_iter);
% 帕累托前沿更新
[fronts, ranks] = non_dominated_sort(pop);
pop = update_archive(pop, fronts);
end
4. 目标函数实现
function cost = evaluate(pos, cap)
% 潮流计算
[V, P_loss] = power_flow(pos, cap);
% 经济成本
C_inv = sum(1e6 * cap); % 假设单位投资成本1e6元/MW
C_loss = 0.5 * P_loss * 24 * 365 * 0.5; % 年损耗成本
C_env = sum(0.2 * cap); % 假设碳排放成本0.2元/kg
% 电压偏差
V_dev = max(abs(V - 1.0));
cost = [C_inv, C_loss, C_env, V_dev];
end
浙公网安备 33010602011771号