【陈越教材 习题3-14】 另类堆栈 (15 分)

在栈的顺序存储实现中,另有一种方法是将Top定义为栈顶的上一个位置。请编写程序实现这种定义下堆栈的入栈、出栈操作。如何判断堆栈为空或者满?

函数接口定义:

bool Push( Stack S, ElementType X );
ElementType Pop( Stack S );

 

其中Stack结构定义如下:

typedef int Position;
typedef struct SNode *PtrToSNode;
struct SNode {
    ElementType *Data;  /* 存储元素的数组 */
    Position Top;       /* 栈顶指针       */
    int MaxSize;        /* 堆栈最大容量   */
};
typedef PtrToSNode Stack;

 

注意:如果堆栈已满,Push函数必须输出“Stack Full”并且返回false;如果队列是空的,则Pop函数必须输出“Stack Empty”,并且返回ERROR。
裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

#define ERROR -1
typedef int ElementType;
typedef enum { push, pop, end } Operation;
typedef enum { false, true } bool;
typedef int Position;
typedef struct SNode *PtrToSNode;
struct SNode {
    ElementType *Data;  /* 存储元素的数组 */
    Position Top;       /* 栈顶指针       */
    int MaxSize;        /* 堆栈最大容量   */
};
typedef PtrToSNode Stack;

Stack CreateStack( int MaxSize )
{
    Stack S = (Stack)malloc(sizeof(struct SNode));
    S->Data = (ElementType *)malloc(MaxSize * sizeof(ElementType));
    S->Top = 0;
    S->MaxSize = MaxSize;
    return S;
}

bool Push( Stack S, ElementType X );
ElementType Pop( Stack S );

Operation GetOp();          /* 裁判实现,细节不表 */
void PrintStack( Stack S ); /* 裁判实现,细节不表 */

int main()
{
    ElementType X;
    Stack S;
    int N, done = 0;

    scanf("%d", &N);
    S = CreateStack(N);
    while ( !done ) {
        switch( GetOp() ) {
        case push: 
            scanf("%d", &X);
            Push(S, X);
            break;
        case pop:
            X = Pop(S);
            if ( X!=ERROR ) printf("%d is out\n", X);
            break;
        case end:
            PrintStack(S);
            done = 1;
            break;
        }
    }
    return 0;
}

 

输入样例:
4
Pop
Push 5
Push 4
Push 3
Pop
Pop
Push 2
Push 1
Push 0
Push 10
End
输出样例:
Stack Empty
3 is out
4 is out
Stack Full
0 1 2 5 

 

以下是答案:

bool Push(Stack S, ElementType X)
{
    if (S->Top == S->MaxSize)
    {
        printf("Stack Full\n");
        return false;
    }
    S->Data[S->Top] = X;
    S->Top++;
    return true;
}
ElementType Pop(Stack S)
{
    if (S->Top == 0)
    {
        printf("Stack Empty\n");
        return ERROR;
    }
    S->Top--;
    int n = S->Top;
    return S->Data[n];
}

 

posted @ 2019-03-27 12:05  林彦豪  阅读(196)  评论(0)    收藏  举报