等比数列求和公式推导
声明:这里公比不能等于 \(1\),如果公比等于 \(1\) 的话,求和公式就是 \(lx\)。
首先开门见山,等比数列求和公式为 \(x\frac{\frac{y}{x} \times q-1}{q-1}\)(\(x\) 是首项,\(y\) 是尾项,\(q\) 是公比),当然也可以写成 \(x \frac{q^{l}-1}{q-1}\)(\(l\) 是数列项数),至于这个公式是怎么推导的,其实也不难,首先我们发现等比数列求和公式是不是可以写成:
\(x\) 是可以快速知道的,所以我们只需要通过一种方法快速求出:
首先如果 \(q = 2\),你是不是会立刻想到一个东西?没错!就是二叉树,所以如果 \(q = 2\),我们就是求一个有 \(l\) 层的二叉树有多少个结点,首先二叉树有一个性质:在一个满二叉树中,非叶子数量等于叶子数量减 \(1\),所以你就会发现当 \(q = 2\) 时:
如果 \(q \not= 2\) 呢?
也差不多,其实他它就是构成了一棵 \(l\) 层的 \(q\) 叉树,你会发现其实这个时候,设叶子结点个数为 \(a\),非叶子节点数量为 \(b\),那么 \(a = (q-1)b+1\),怎么证明,采用数学归纳法,如果我们在第一层那么不管 \(q\) 是多少都满足情况,因为 \(q = (q-1) \times 1+1\),接着开始归纳,假设我们当前在第 \(l\) 层,我们要证明 \(\frac{q^{l}-1}{q-1}+q^{l} = \frac{q^{l+1}-1}{q-1}\),开始推导:
得证。
所以:
所以等差数列求和公式为:
当然也可以写成:
都是一样的。
附录:
高中课本的教材写的是 \(\frac{x(1-q^l)}{1-q}\),经过推导:
你会发现这个和我推的一模一样。

浙公网安备 33010602011771号