SLAM14讲 第七章 2D-2D[2] 三角测量

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
// #include "extra.h" // used in opencv2
using namespace std;
using namespace cv;

//找特征点和描述子
void find_feature_matches (
    const Mat& img_1, const Mat& img_2,
    std::vector<KeyPoint>& keypoints_1,
    std::vector<KeyPoint>& keypoints_2,
    std::vector< DMatch >& matches );
//DMatch是用于匹配特征关键点的特征描述子的类:查询特征描述子索引, 特征描述子索引, 训练图像索引, 以及不同特征描述子之间的距离.

//位姿估计,求R,t
void pose_estimation_2d2d (
    const std::vector<KeyPoint>& keypoints_1,
    const std::vector<KeyPoint>& keypoints_2,
    const std::vector< DMatch >& matches,
    Mat& R, Mat& t );

//三角测量/化,求特征点的三维空间坐标,求double类型的三维点
void triangulation (
    const vector<KeyPoint>& keypoint_1,
    const vector<KeyPoint>& keypoint_2,
    const std::vector< DMatch >& matches,
    const Mat& R, const Mat& t,
    vector<Point3d>& points
);

// 像素坐标转相机归一化坐标,p-O1(相机光心坐标=相机光心标定值/焦距)
Point2f pixel2cam( const Point2d& p, const Mat& K );


//——————————————————————————————————————
//定义float类型的二维点
int main ( int argc, char** argv )
{
    if ( argc != 3 )
    {
        cout<<"usage: triangulation img1 img2"<<endl;
        return 1;
    }
    //-- 读取图像
    Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
    Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );

    //-- 找匹配点
    vector<KeyPoint> keypoints_1, keypoints_2;
    vector<DMatch> matches;
    find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
    cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;

    //-- 估计两张图像间运动
    Mat R,t;
    pose_estimation_2d2d ( keypoints_1, keypoints_2, matches, R, t );

    //-- 三角化
    vector<Point3d> points;
    triangulation( keypoints_1, keypoints_2, matches, R, t, points );
    
    //-- 验证三角化点与特征点的重投影关系
    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
    for ( int i=0; i<matches.size(); i++ )
    {
        Point2d pt1_cam = pixel2cam( keypoints_1[ matches[i].queryIdx ].pt, K );
        Point2d pt1_cam_3d(
            points[i].x/points[i].z,
            points[i].y/points[i].z
        );
        
        cout<<"point in the first camera frame: "<<pt1_cam<<endl;
        cout<<"point projected from 3D "<<pt1_cam_3d<<", d="<<points[i].z<<endl;
        
        // 第二个图
        Point2f pt2_cam = pixel2cam( keypoints_2[ matches[i].trainIdx ].pt, K );
        Mat pt2_trans = R*( Mat_<double>(3,1) << points[i].x, points[i].y, points[i].z ) + t;
        pt2_trans /= pt2_trans.at<double>(2,0);
        cout<<"point in the second camera frame: "<<pt2_cam<<endl;
        cout<<"point reprojected from second frame: "<<pt2_trans.t()<<endl;
        cout<<endl;
    }
    
    return 0;
}

void find_feature_matches ( const Mat& img_1, const Mat& img_2,
                            std::vector<KeyPoint>& keypoints_1,
                            std::vector<KeyPoint>& keypoints_2,
                            std::vector< DMatch >& matches )
{
    //-- 初始化
    Mat descriptors_1, descriptors_2;
    // used in OpenCV3
    Ptr<FeatureDetector> detector = ORB::create();
    Ptr<DescriptorExtractor> descriptor = ORB::create();
    // use this if you are in OpenCV2
    // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
    // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
    Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create("BruteForce-Hamming");
    //-- 第一步:检测 Oriented FAST 角点位置
    detector->detect ( img_1,keypoints_1 );
    detector->detect ( img_2,keypoints_2 );

    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute ( img_1, keypoints_1, descriptors_1 );
    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector<DMatch> match;
   // BFMatcher matcher ( NORM_HAMMING );
    matcher->match ( descriptors_1, descriptors_2, match );

    //-- 第四步:匹配点对筛选
    double min_dist=10000, max_dist=0;

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        double dist = match[i].distance;
        if ( dist < min_dist ) min_dist = dist;
        if ( dist > max_dist ) max_dist = dist;
    }

    printf ( "-- Max dist : %f \n", max_dist );
    printf ( "-- Min dist : %f \n", min_dist );

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
        {
            matches.push_back ( match[i] );
        }
    }
}

void pose_estimation_2d2d (
    const std::vector<KeyPoint>& keypoints_1,
    const std::vector<KeyPoint>& keypoints_2,
    const std::vector< DMatch >& matches,
    Mat& R, Mat& t )
{
    // 相机内参,TUM Freiburg2
    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

    //-- 把匹配点转换为vector<Point2f>的形式
    vector<Point2f> points1;
    vector<Point2f> points2;

    for ( int i = 0; i < ( int ) matches.size(); i++ )
    {
        points1.push_back ( keypoints_1[matches[i].queryIdx].pt );
        points2.push_back ( keypoints_2[matches[i].trainIdx].pt );
    }

    //-- 计算基础矩阵
    Mat fundamental_matrix;
    fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT );
    cout<<"fundamental_matrix is "<<endl<< fundamental_matrix<<endl;

    //-- 计算本质矩阵
    Point2d principal_point ( 325.1, 249.7 );                //相机主点, TUM dataset标定值
    int focal_length = 521;                        //相机焦距, TUM dataset标定值
    Mat essential_matrix;
    essential_matrix = findEssentialMat ( points1, points2, focal_length, principal_point );
    cout<<"essential_matrix is "<<endl<< essential_matrix<<endl;

    //-- 计算单应矩阵
    Mat homography_matrix;
    homography_matrix = findHomography ( points1, points2, RANSAC, 3 );
    cout<<"homography_matrix is "<<endl<<homography_matrix<<endl;

    //-- 从本质矩阵中恢复旋转和平移信息.
    recoverPose ( essential_matrix, points1, points2, R, t, focal_length, principal_point );
    cout<<"R is "<<endl<<R<<endl;
    cout<<"t is "<<endl<<t<<endl;
}

void triangulation (
    const vector< KeyPoint >& keypoint_1,
    const vector< KeyPoint >& keypoint_2,
    const std::vector< DMatch >& matches,
    const Mat& R, const Mat& t,
    vector< Point3d >& points )
{
    // --变换矩阵T3x4 T1=[I;0],T2=[R;t]
    Mat T1 = (Mat_<float> (3,4) <<
        1,0,0,0,
        0,1,0,0,
        0,0,1,0);
    Mat T2 = (Mat_<float> (3,4) <<
        R.at<double>(0,0), R.at<double>(0,1), R.at<double>(0,2), t.at<double>(0,0),
        R.at<double>(1,0), R.at<double>(1,1), R.at<double>(1,2), t.at<double>(1,0),
        R.at<double>(2,0), R.at<double>(2,1), R.at<double>(2,2), t.at<double>(2,0)
    );
    //相机内参K
    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
    
    vector<Point2f> pts_1, pts_2;//特征点的相机归一化坐标
    for ( DMatch m:matches )
    {
        // 将像素坐标转换至相机归一化坐标
        pts_1.push_back ( pixel2cam( keypoint_1[m.queryIdx].pt, K) );
        pts_2.push_back ( pixel2cam( keypoint_2[m.trainIdx].pt, K) );
    }
    
    Mat pts_4d;
    //points4D – 4xN array of reconstructed points in homogeneous coordinates.
    //输出的3D坐标是齐次坐标,共四个维度,因此需要将前三个维度除以第四个维度以得到非齐次坐标xyz。这个坐标是在相机坐标系下的坐标
    cv::triangulatePoints( T1, T2, pts_1, pts_2, pts_4d );
    
    // 转换成非齐次坐标
    for ( int i=0; i<pts_4d.cols; i++ )
    {
        Mat x = pts_4d.col(i);
        x /= x.at<float>(3,0); // 归一化
        Point3d p (
            x.at<float>(0,0),
            x.at<float>(1,0),
            x.at<float>(2,0)
        );
        points.push_back( p );//三角化后的特征点在归一化平面的3D坐标
    }
}

Point2f pixel2cam ( const Point2d& p, const Mat& K )
{
    return Point2f
    (
        ( p.x - K.at<double>(0,2) ) / K.at<double>(0,0),
        ( p.y - K.at<double>(1,2) ) / K.at<double>(1,1)
    );
}

  

 

posted @ 2020-07-22 16:31  尘寰肆漓  阅读(352)  评论(0)    收藏  举报