JVM --内存结构

JVM 的内存布局(内存结构)?

Java运行时数据区:Java虚拟机在执行Java程序的过程中会将其管理的内存划分为若干个不同的数据区域,这些区域有各自的用途、创建和销毁的时间,有些区域随虚拟机进程的启动而存在,有些区域则是依赖用户线程的启动和结束来建立和销毁。

根据《Java虚拟机规范》的规定,Java虚拟机所管理的内存包括以下几个运行时数据区域,如图:

方法区和堆是所有线程共享的内存区域;而虚拟机栈、本地方法栈和程序计数器是运行线程私有的内存区域。

堆(Java Heap),也叫 GC 堆(Java堆是垃圾收集器管理的内存区域,因此很多时候称为“GC堆”),在虚拟机启动时创建,是一个线程共享的内存区域,也是 JVM 中占用内存最大的一块区域,Java对象存储的地方

《Java虚拟机规范》对 Java 堆的描述是:“所有的对象实例以及数组都应当在堆上分配”。而这里笔者写的“几乎”是指从实现角度来看,随着Java语 言的发展,现在已经能看到些许迹象表明日后可能出现值类型的支持,即使只考虑现在,由于即时编译技术的进步,尤其是逃逸分析技术的日渐强大,栈上分配、标量替换优化手段已经导致一些微妙的变化悄然发生,所以说Java对象实例都分配在堆上也渐渐变得不是那么绝对了。比如 JIT(Just In Time Compilation,即时编译 )优化中的逃逸分析,使得变量可以直接在栈上被分配。当对象或者是变量在方法中被创建之后,其指针可能被线程所引用,而这个对象就被称作指针逃逸或者是引用逃逸。

比如以下代码中的 sb 对象的逃逸:

public static StringBuffer createString() {
    StringBuffer sb = new StringBuffer();
    sb.append("Java");
    return sb;
}

sb 虽然是一个局部变量,但上述代码可以看出,它被直接 return 出去了,因此可能被赋值给了其他变量,并且被完全修改,于是此 sb 就逃逸到了方法外部。
想要 sb 变量不逃逸也很简单,可以改为如下代码:

public static String createString() {
    StringBuffer sb = new StringBuffer();
    sb.append("Java");
    return sb.toString();
}

通过逃逸分析可以让变量或者是对象直接在栈上分配,从而极大地降低了垃圾回收的次数,以及堆分配对象的压力,进而提高了程序的整体运行效率。

Java堆既可以被实现成固定大小的,也可以是可扩展的,不过当前主流的Java虚拟机都是按照可扩 展来实现的(通过参数-Xmx和-Xms设定)。如果在Java堆中没有内存完成实例分配,并且堆也无法再扩展时,Java虚拟机将会抛出OutOfMemoryError异常。

方法区

方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。虽然《Java虚拟机规范》中把 方法区描述为堆的一个逻辑部分,但是它却有一个别名叫作“非堆”(Non-Heap),目的是与Java堆区 分开来。

说到方法区,不得不提一下“永久代”这个概念,尤其是在JDK 8以前,许多Java程序员都习惯在 HotSpot虚拟机上开发、部署程序,很多人都更愿意把方法区称呼为“永久代”(Permanent Generation),或将两者混为一谈。本质上这两者并不是等价的,它只是 HotSpot 中特有的一个概念。这是因为 HotSpot 技术团队把垃圾收集器的分代设计扩展到方法区之后才有的一个概念,可以理解为 HotSpot 技术团队只是用永久代来实现方法区而已,但这会导致一个致命的问题,这样设计更容易造成内存溢出。因为永久代有 -XX:MaxPermSize(方法区分配的最大内存)的上限,即使不设置也会有默认的大小。例如,32 位操作系统中的 4GB 内存限制等,而且有极少数方法 (例如String::intern())会因永久代的原因而导致不同虚拟机下有不同的表现。比如 String::intern() 方法。所以在 JDK 1.7 时 HotSpot 虚拟机已经把原本放在永久代的字符串常量池和静态变量等移出了方法区,并且在 JDK 1.8 中完全废弃了永久代的概念,改用与JRockit、J9一样在本地内存中实现的元空间(Metaspace)来代替,把JDK 7中永久代还剩余的内容(主要是类型信息)全部移到元空间中

运行时常量池

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

程序计数器

程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。在Java虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成

为何要将程序计数器设置为线程私有?

由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一 个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存

如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器值则应为空(Undefined)。此内存区域是唯 一一个在《Java虚拟机规范》中没有规定任何OutOfMemoryError情况的区域

《Java并发编程之美》中描述如下:

Java虚拟机栈

Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态连接、方法出口等信 息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

详细版

每个方法被执行的时候,都会创建一个栈帧,把栈帧压入栈,当方法正常返回或者抛出未捕获的异常时,栈帧就会出栈。

栈帧:栈帧存储方法的相关信息,包含局部变量表、返回值、操作数栈、动态链接。

a、局部变量表:局部变量表存放了编译期可知的各种Java虚拟机基本数据类型(boolean、byte、char、short、int、 float、long、double)、对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始 地址的引用指针,也可能是指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress 类型(指向了一条字节码指令的地址)。

b、返回值:如果有返回值的话,压入调用者栈帧中的操作数栈中,并且把PC的值指向方法调用指令后面的一条指令地址。

c、操作数栈:操作变量的内存模型。操作数栈的最大深度在编译的时候已经确定(写入方法区code属性的max_stacks项中)。操作数栈的的元素可以是任意Java类型,包括long和double,32位数据占用栈空间为1,64位数据占用2。方法刚开始执行的时候,栈是空的,当方法执行过程中,各种字节码指令往栈中存取数据。

d、动态链接:每个栈帧都持有在运行时常量池中该栈帧所属方法的引用,持有这个引用是为了支持方法调用过程中的动态链接。 

本地方法栈

本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务

《Java虚拟机规范》对本地方法栈中方法使用的语言、使用方式与数据结构并没有任何强制规 定,因此具体的虚拟机可以根据需要自由实现它,甚至有的Java虚拟机(譬如Hot-Spot虚拟机)直接 就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈也会在栈深度溢出或者栈扩展失 败时分别抛出StackOverflowError和OutOfMemoryError异常。

posted @ 2021-01-04 23:19  JustJavaIt  阅读(181)  评论(0编辑  收藏  举报