JDK1.6锁优化

  高效并发是从JDK 5升级到JDK 6后一项重要的改进项,HotSpot虚拟机开发团队在这个版本上花费了大量的资源去实现各种锁优化技术,如适应性自旋(Adaptive Spinning)、锁消除(Lock Elimination)、锁膨胀(Lock Coarsening)、轻量级锁(Lightweight Locking)、偏向锁(Biased Locking)等,这些技术都是为了在线程之间更高效地共享数据及解决竞争问题,从而提高程序的执行效率

自旋锁

  “自旋”就是循环的意思,让获取锁失败的那个线程采用循环的方式去尝试获取锁,而不像普通的锁那样,获取对象锁失败后,当前线程就进入阻塞等待,直到请求锁定的对象被持有它的线程释放为止。

在 Java 1.5 版本及以上的并发包中,也就是java.util.concurrent 的包中,里面的原子类基本都是自旋锁的实现。Eg:AtomicLong 的实现

出现原因?

  互斥同步对性能最大的影响是阻塞的实现,挂起线程和恢复线程的操作都需要转入内核态中完成,这些操作给Java虚拟机的并发性能带来了很大的压力。同时,虚拟机的开发团队也注意到在许多应用上,共享数据的锁定状态只会持续很短的一段时间,为了这段时间去挂起和恢复线程并不值得。使用自旋方式去不停地尝试获取锁,让线程始终处于 Runnable 状态,可以避免上下文切换等开销,提高了效率

缺点?

  自旋等待本身虽然避免了线程切换的开销,但它是要占用处理器时间的,所以如果锁被占用的时间很短,自旋等待的效果就会非常好,反之如果锁被占用的时间很长,那么自旋的线程只会白白消耗处理器资源,而不会做任何有价值的工作,这就会带来性能的浪费。因此自旋等待的时间必须有一定的限度,如果自旋超过了限定的次数仍然没有成功获得锁,就应当使用传统的方式去挂起线程。自旋次数的默认值是十次,用户也可以使用参数-XX:PreBlockSpin来自行更改。

普通锁和自旋锁获取锁的流程

某线程尝试获取同步资源的锁失败后

(1)    如果是非自旋锁获取锁失败后,CPU会使当前线程休眠,然后切换线程去执行其他操作,直到占用同步资源的线程释放了锁,CPU 再把之前的线程恢复,让这个线程再去尝试获取这把锁。如果再次失败,就再次让线程休眠,如果成功就可以获取到同步资源的锁。

(2)    如果是自旋锁并不会放弃CPU 时间片,而是通过自旋等待锁的释放,直到成功获取到同步资源的锁为止。

自适应自旋锁

  在 JDK 1.6 中引入了自适应的自旋锁来解决长时间自旋的问题。自适应意味着自旋的时间不再是固定的了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定的。如果在同一个锁对象上,自旋等待刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也很有可能再次成功,进而允许自旋等待持续相对更长的时间,比如持续100次忙循环。另一方面,如果对于某个锁,自旋很少成功获得过锁,那在以后要获取这个锁时将有可能直接省略掉自旋过程,以避免浪费处理器资源

锁消除

  锁消除是指虚拟机即时编译器在运行时,对一些代码要求同步,但是对被检测到不可能存在共享数据竞争的锁进行消除锁消除的主要判定依据来源于逃逸分析的数据支持,线程同步本身是一个相对耗时的过程,如果逃逸分析能够确定一个变量不会逃逸出线程,无法被其他线程访问,那么这个变量的读写肯定就不会有竞争,对这个变量实施的同步措施也就可以安全地消除掉。

锁粗化

  原则上,我们在编写代码的时候,总是推荐将同步块的作用范围限制得尽量小——只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变少,即使存在锁竞争,等待锁的线程也能尽可能快地拿到锁。 大多数情况下,上面的原则都是正确的,但是如果一系列的连续操作都对同一个对象反复加锁和解锁,甚至加锁操作是出现在循环体之中的,那即使没有线程竞争,频繁地进行互斥同步操作也会导致不必要的性能损耗

锁升级

锁升级其实就是从偏向锁到轻量级锁再到重量级锁升级的过程,这是 JDK 1.6 提供的优化功能,也称之为锁膨胀

下面我们来介绍一下偏向锁、轻量级锁和重量级锁。这三种锁是特指 synchronized 锁的状态的,通过在对象头中的 mark word 来表明锁的状态

偏向锁

  偏向锁也是JDK 6中引入的一项锁优化措施,它的目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能如果说轻量级锁是在无竞争的情况下使用CAS操作去消除同步使用的互斥量,那偏向锁就是在无竞争的情况下把整个同步都消除掉,连CAS操作都不去做了

  偏向锁中的“偏”,就是偏心的“偏”、偏袒的“偏”。它的意思是这个锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁一直没有被其他的线程获取,则持有偏向锁的线程将永远不需要再进行同步

轻量级锁 

  轻量级锁是JDK 6时加入的新型锁机制,它名字中的“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的,因此传统的锁机制就被称为“重量级”锁。不过,需要强调一点,轻量级锁并不是用来代替重量级锁的,它设计的初衷是在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗

  轻量级锁能提升程序同步性能的依据是“对于绝大部分的锁,在整个同步周期内都是不存在竞争的”这一经验法则。如果没有竞争,轻量级锁便通过CAS操作成功避免了使用互斥量的开销;但如果确实存在锁竞争,除了互斥量的本身开销外,还额外发生了CAS操作的开销。因此在有竞争的情况下,轻量级锁反而会比传统的重量级锁更慢

 轻量级锁是通过比较并交换(CAS,Compare and Swap)来实现的,它对比的是线程和对象的 Mark Word(对象头中的一个区域),如果更新成功则表示当前线程成功拥有此锁;如果失败,虚拟机会先检查对象的 Mark Word 是否指向当前线程的栈帧,如果是,则说明当前线程已经拥有此锁,否则,则说明此锁已经被其他线程占用了。当两个以上的线程争抢此锁时,轻量级锁就膨胀为重量级锁,这就是锁升级的过程。

重量级锁

  这种锁利用操作系统的同步机制实现,所以开销比较大。当多个线程直接有实际竞争,并且锁竞争时间比较长的时候,此时偏向锁和轻量级锁都不能满足需求,锁就会膨胀为重量级锁。重量级锁会让其他申请却拿不到锁的线程进入阻塞状态。

锁升级的路径

  最后,我们看下锁的升级路径,如图所示。从无锁到偏向锁,再到轻量级锁,最后到重量级锁。结合前面我们讲过的知识,偏向锁性能最好,避免了 CAS 操作。而轻量级锁利用自旋和 CAS 避免了重量级锁带来的线程阻塞和唤醒,性能中等。重量级锁则会把获取不到锁的线程阻塞,性能最差。

JVM 默认会优先使用偏向锁,如果有必要的话才逐步升级,这大幅提高了锁的性能。

posted @ 2020-09-20 17:05  JustJavaIt  阅读(248)  评论(0编辑  收藏  举报