生成函数

生成函数

1. 牛顿二项式定理

1.1. 牛顿二项式系数

\(n\in\mathbb{C}, m\in\mathbb{Z}\)

\[\binom n m = \begin{cases} \frac{n^{\underline{m}}}{m!} & m > 0\\ 1 & m = 0\\ 0 & m < 0 \end{cases} \]

下降幂:\(n^{\underline{m}} = n(n-1)(n-2)\cdots(n-m+1)\)

上升幂:\(n^{\overline{m}} = n(n+1)(n+2)\cdots(n+m-1)\)

1.2. 牛顿二项式定理

\(x,y \in \mathbb{R},\alpha\in\mathbb{C},|x| < |y|\)

\[(x+y)^\alpha = \sum\limits_{k=0}\binom{\alpha}{k}x^ky^{\alpha-k} \]

若无限制 \(|x| < |y|\),则 \(\text{RHS}\) 不收敛。

证明:Asika391 - 广义牛顿二项式定理

2. 普通生成函数 OGF

序列 \(a\)普通生成函数(\(\text{Ordinary Generating Function, OGF}\),一般称生成函数,定义为形式幂级数:

\[f(z)= a_0 + a_1z + a_2z^2+\cdots = \sum\limits_{i\ge0}a_0z^i \]

这里的 \(z\) 不带值,起到一个占位的作用。

\([z^k]f(z)\)\(f(z)\)\(z^k\) 的系数。例如 \([z^3](8 + 9z + 7z^2 + 5z^3 + 7z^4) = 5\)

2.1. 基本运算

\(f(z) = \sum\limits_{i\ge0}a_iz^i, g(z) = \sum\limits_{i\ge0}b_iz^i\)

  • 加减法:\(f(z) \pm g(z) = (f\pm g)(z)\sum\limits_{i\ge0}(a_i\pm b_i)z^i\)

  • 乘法、卷积:\(f(z) \cdot g(z) = (f \cdot g)(z) = \sum\limits_{i\ge0} z^i\sum\limits_{j=0}^ia_jb_{i-j}\)

2.2. 常见生成函数

\(\left<1,1,1,\cdots\right>\) 的生成函数为:

\[f(z) = \frac{1}{1-z} \]

\[\begin{aligned} f(z) &= 1 + z + z^2 + \cdots\\ 1 + zf(z) &= f(z)\\ f(z) &= \frac{1}{1-z} \end{aligned} \]

\(\left<0,1,1,1\cdots\right>\) 的生成函数为:

\[f(z) = \frac{x}{1-x} \]

\[f(z) = \sum\limits_{i\ge0}z^{i+1}=z\sum\limits_{i\ge0}z^i=\frac{z}{1-z} \]

\(\left<p^0,p^1,p^2,\cdots\right>\) 的生成函数为:

\[f(z) = \frac{1}{1 - pz} \]

\( f(z) = \sum\limits_{i\ge0}p^iz^i = \sum\limits_{i\ge0}(pz)^i \)

运用等差数列求和公式得:

\(f(z) = \frac{1}{1 - pz}\)

\(\left<1,0,1,0,1,0,\cdots\right>\) 的生成函数为:

\[f(z) = \frac{1}{1-z^2} \]

\[\begin{aligned} f(z) &= 1 + z^2 + z^4 + z^6 + \cdots\\ &= 1 + (z^2) + (z^2)^2 + (z^2)^3 + \cdots \\ &= \frac{1}{1-z^2} \end{aligned}\]

\(\left<\underbrace{0,0\dots,0}_{a \text{ number of 0}},b^0,\underbrace{0,0,\cdots,0}_{c-1\text{ number of 0}},b^1,\underbrace{0,0,\cdots,0}_{c-1 \text{ number of 0}},b^2,\cdots\right>\) 的生成函数为:

\[f(z) = \frac{z^a}{1-bz^c} \]

综合上面三个生成函数即可得。

\(\left<1,2,3,\dots\right>\) 的生成函数为:

\[f(z) = \frac{1}{(1-z)^2} \]

\( \begin{aligned} f(z) = 1 + 2z + 3z^2 + \cdots \end{aligned} \)

\(\frac{\text{d}}{\text{d}z} z^k=kz^{k-1}\)

\( f(z) = {\text{d}\over\text{d}z} (1-z)^{-1} = \frac{1}{(1-z)^2} \)

\(\left<\binom{n}{0},\binom{n}{1}, \binom{n}{2},\cdots\right>\) 的生成函数为:

\[f(z) = (1+z)^n \]

\(f(z) = \sum\limits_{i=0}\binom{n}{i}z^i\)

应用二项式定理。

\(f(z) = (1 + z)^n\)

\(\left<\binom{n}{0},\binom{n+1}{1},\binom{n+2}{2},\cdots\right>\) 的生成函数为:

\[f(z) = \frac{1}{(1-z)^{n+1}} \]

数学归纳法。

\(n = 0\) 时,\(f(z) = \frac{1}{1-z}\) 成立。

\(n > 0\) 时:

\[\begin{aligned} \frac{1}{(1-z)^{n+1}} &= \frac{1}{(1-z)^n}\frac{1}{1-z}\\ &=\left(\sum\limits_{i\ge0}\binom{n-1+i}{i}z^i\right)\left(\sum\limits_{i\ge0}z^i\right)\\ &=\sum\limits_{i\ge0} \sum\limits_{j\ge0}\binom{n-1+i}{i}z^{i+j}\\ &=\sum\limits_{k\ge0}\sum\limits_{i\ge0}\sum_{j\ge0}\binom{n-1+i}{i}z^{k}[i+j=k]\\ &=\sum\limits_{k\ge0}z^k\sum\limits_{i=0}^k\binom{n-1+i}{i}\\ &=\sum\limits_{k\ge0}z^k\binom{n+k}{k} \end{aligned} \]

\(\left<\binom{0}{n},\binom{1}{n},\binom{2}{n},\cdots\right>\) 的生成函数为:

\[f(z) = \frac{z^n}{(1-z)^{n+1}} \]

\[\begin{aligned} f(z) &= z^n\sum\limits_{i\ge0}z^i\binom{n+i}{i}\\ &= \sum\limits_{i\ge0}z^{n+i}\binom{n+i}{i} \\ &= \sum\limits_{i\ge0}z^{n+i}\binom{n+i}{n}\\ &= \sum\limits_{n+i\ge n}z^{n+i}\binom{n+i}{n}\\ &= \sum\limits_{i\ge n}z^{i}\binom{i}{n}\\ &= \sum\limits_{i\ge 0}z^{i}\binom{i}{n}\\ \end{aligned}\]

\(\left<0,1,4,9,16,25,\cdots\right>\) 的生成函数为:

\[f(z) = \frac{1}{1-z}-\frac{1}{(1-z)^2}+\frac{2z}{(1-z)^3}=\frac{z(z+1)}{(1-z)^3} \]

方法一:

\[\begin{aligned} zf(z) &= \sum\limits_{i\ge0}i^2z^{i+1}\\ &=\sum\limits_{i\ge1}(i-1)^2z^i\\ &=\sum\limits_{i\ge1}i^2z^i - 2\sum\limits_{i\ge1}iz^i+\sum\limits_{i\ge1}z^i\\ &=\sum\limits_{i\ge0}i^2z^i - 2\sum\limits_{i\ge1}iz^i+\sum\limits_{i\ge1}z^i\\ &=f(z)-\frac{2z}{(1-z)^2} + \frac{1}{1-z}-1 \end{aligned} \]

整理即可得。

方法二:对 \(\frac{1}{1-z}\) 做两次乘指数的操作

\[f(z) = z(z(\frac{1}{1-z})')'=\frac{z(z+1)}{(1-z)^3} \]

2.3. 对系数的变换

设生成函数 \(f(z) = \sum\limits_{i\ge0}a_iz^i\)\(E\) 为原式。

\(a_i\) 变为 \(a_{i-k}\),即将系数右移 \(k\) 个,若 \(k<0\) 则是有左移 \(-k\) 个(前提是 \(a_{0\sim(-k)-1}=0\)):

\[f(z) \cdot z^k \]

\[\begin{aligned} E&=\sum\limits_{i\ge0}a_iz^{i+k}\\ &=\sum\limits_{i+k\ge k}a_iz^{i+k}\\ &=\sum\limits_{i\ge k}a_{i-k}z^i\\ &=\sum\limits_{i\ge 0}a_{i-k}z^i \end{aligned} \]

\(a_i\) 变为 \(\sum\limits_{j=0}^ia_j\),即做前缀和:

\[f(z) \cdot \frac{1}{1-z} \]

\[\begin{aligned} E &= \left(\sum\limits_{i\ge0}a_iz^i\right)\left(\sum\limits_{i\ge0}z^i\right)\\ &=\sum\limits_{i\ge0}z^i\sum\limits_{j=0}^i 1 \cdot a_j \end{aligned} \]

\(a_i\) 变为 \(a_i-a_{i-1}\),做即差分:

\[f(z) \cdot (1-z) \]

\[\begin{aligned} E&=\sum\limits_{i\ge0}a_iz^i - \sum\limits_{i\ge0}a_iz^{i+1}\\ &=\sum\limits_{i\ge0}a_iz^i - \sum\limits_{i\ge0}a_{i-1}z^i\\ &=\sum\limits_{i\ge0}(a_i-a_{i-1})z^i \end{aligned} \]

\(a_i\) 变为 \(i\cdot a_i\)

\[z\cdot f'(z) \]

\[\begin{aligned} E &= \sum\limits_{i\ge0}a_i(z^i)'z\\ &= \sum\limits_{i\ge0}i\cdot a_i z^i \end{aligned} \]

\(a_i\) 变为 \(i^{-1}a_i\),前提是 \(a_0=0\)

\[\int z^{-1}f(z) \text{d}z - C \]

\[\begin{aligned} E&=\sum\limits_{i\ge1}a_i\int z^{i-1}\text{d}z - C\\ &=\sum\limits_{i\ge1}a_i i^{-1}z^i \end{aligned} \]

2.4. 应用

2.4.1. 递推关系

1. 斐波那契数列

设斐波那契数列 \(a_0=0,a_1=1,a_i=a_{i-1}+a_{i-2}(i\ge2)\) 的生成函数为 \(f(z)\)\([z^k]f(z)\) 即为 \(a_k\) 的值。

方法一:

\[\begin{aligned} f(z) &= zf(z)+z^2f(z)-a_0z+a_0-a_1z\\ f(z) &= \frac{z}{1-z-z^2} \end{aligned} \]

考虑将 \(f(z)\) 转化为熟悉的形式。待定系数法:

\[\begin{aligned} \frac{A}{1-az}+\frac{B}{1-bz}&=\frac{z}{1-z-z^2}\\ \frac{z(-Ab-aB) +A+B}{1-z(a+b)+z^2ab}&=\frac{z}{1-z-z^2} \end{aligned} \]

\[\begin{cases} -Ab-aB=1\\ A+B=0\\ a+b=1\\ ab=-1 \end{cases} \]

\[\begin{cases} A=\frac{1}{\sqrt 5}\\ B=-\frac{1}{\sqrt 5}\\ a=\frac{1+\sqrt 5}{2}\\ b=\frac{1-\sqrt 5}{2}\\ \end{cases} \]

\[\begin{aligned} f(z) &= \sum\limits_{i\ge0}\frac{1}{\sqrt 5}\left(\frac{1}{1-\frac{1+\sqrt 5}{2}z^i}-\frac{1}{1-\frac{1-\sqrt 5}{2}z^i}\right)\\ &=\sum\limits_{i\ge0}z^i\frac{1}{\sqrt 5}\left(\left(\frac{1+\sqrt5}{2}\right)^i - \left(\frac{1-\sqrt5}{2}\right)^i \right) \end{aligned} \]

\[a_n=[z^n]f(z)=\frac{1}{\sqrt 5}\left(\left(\frac{1+\sqrt5}{2}\right)^n - \left(\frac{1-\sqrt5}{2}\right)^n \right) \]

方法二:

\[\begin{aligned} f(z) &=z \cdot \frac{1}{1-(z+z^2)}\\ &= z \sum\limits_{i\ge0}(z^2+z)^i\\ &= z \sum\limits_{i\ge0}\sum\limits_{j\ge0}\binom{i}{j}z^{2j}z^{i-j}\\ &= z \sum\limits_{i\ge0}\sum\limits_{j\ge0}\binom{i}{j}z^{i+j}\\ &= z \sum\limits_{n\ge0}z^n\sum\limits_{i\ge0}\sum\limits_{j\ge0}\binom{i}{j}[i+j=n]\\ &= \sum\limits_{n\ge0}z^{n+1}\sum\limits_{0\le i\le n}\binom{i}{n-i}\\ &= \sum\limits_{n\ge1}z^n\sum\limits_{0\le i\le n - 1}\binom{i}{n-1-i} \end{aligned} \]

\[a_n=\sum\limits_{0\le i \le n-1}\binom{i}{n-1-i} \]

这里的组合数只是普通的二项式系数。

2. 求解递推关系 1

求解递推关系 \(a_0=2,a_1=7,a_i=7a_{i-1}-12a_{i-2}(i\ge2)\)

设生成函数 \(f(z) = \sum\limits_{i\ge0}a_iz^i\)

\[\begin{aligned} f(z) -a_0 - za_1 &= \sum\limits_{i\ge2}a_iz^i\\ &= \sum\limits_{i\ge2}(2a_{i-1}-12a_{i-2})z^i\\ &= 2\sum\limits_{i\ge2}a_{i-1}z^i - 12\sum\limits_{i\ge2}a_{i-2}z^i\\ &=2z\sum\limits_{i\ge1}a_iz^i-12z^2\sum\limits_{i\ge0}a_iz^i\\ &=2z(f(z)-a_0)-12z^2f(z) \end{aligned} \]

\(a_0=2,a_1=12\) 带入后整理得

\[\begin{aligned} f(z) &= \frac{2-7z}{1-7z+12z^2}\\ &=\frac{1}{1-3z}+\frac{1}{1-4z}\\ &=\sum\limits_{i\ge0}(3^i + 4^i)z^i \end{aligned} \]

\(a_n = 3^n+4^n\)

3. 求解递推关系 2

求递推关系 \(a_0=0,a_1=1,a_i=4a_{i-1}-4a_{i-2}(i\ge2)\)

设生成函数 \(f(z) = \sum\limits_{i\ge0}a_iz^i\)

\[\begin{aligned} f(z) - a_0 - a_1z &= \sum\limits_{i\ge2}a_iz^i\\ &=\sum\limits_{i\ge2}(4a_{i-1}-4a_{i-2})z^i\\ &=4z\sum\limits_{i\ge1}a_iz^i -4z^2\sum\limits_{i\ge0}a_iz^i\\ &=4z(f(z)-a_0) -4z^2f(z) \end{aligned} \]

\(a_0 = 0, a_1 = 1\) 带入后整理得

\[\begin{aligned} f(z) &= \frac{z}{(1-2z)^2}\\ &= z\sum\limits_{i\ge0}\binom{i+1}{i}(2z)^i\\ &= \sum\limits_{i\ge0}(i+1)2^iz^{i+1}\\ &= \sum\limits_{i+1\ge1}(i+1)2^iz^{i+1}\\ &= \sum\limits_{i\ge1}i\cdot 2^{i-1}z^i\\ &= \sum\limits_{i\ge0}i\cdot 2^{i-1}z^i\\ \end{aligned} \]

\(a_n = n \cdot 2^n\)

2.4.2. 化简式子

1. At Coder Beginner Contest 405 E

ABC405E

枚举 \(i\)\(\text{b}\) 全在 \(\text{d}\) 左边,\(j\)\(\text{c}\) 全在 \(A\) 右边。

序列分成三部分:

  1. 第一个位置到最后一个 \(\text{a}\) 的位置,贡献为 \(\binom{A+B-1-i}{A-1}\)
  2. 中间 \(\text{b c}\) 混合部分,贡献为 \(\binom{i+j}{i}\)
  3. 第一个 \(\text{d}\) 位置到最后一个位置,贡献为 \(\binom{C+D-1-j}{D-1}\)

则答案为

\[\text{ans} = \sum\limits_{i=0}^{B}\sum\limits_{j=0}^{C}\binom{A+B-1-i}{A-1}\binom{C+D-1-j}{D-1}\binom{i+j}{i} \]

但这个式子是 \(O(n^2)\) 的。

由牛顿二项式定理可得

\[(1-z)^{-n}=\sum\limits_{k=0}^{\infty}\binom{n+k-1}{k-1}z^k \]

\[\begin{aligned} &\text{ans}\\ &= \sum\limits_{i=0}^{B}\binom{A+B-1-i}{A-1}\sum\limits_{j=0}^{C}\bigg([z^{C-j}]\frac{1}{(1-z)^{D}}\bigg)\bigg([z^j]\frac{1}{(1-z)^{i+1}}\bigg)\\ &=\sum\limits_{i=0}^{B}\binom{A+B-1-i}{A-1}[z^C]\frac{1}{(1-z)^{D+i+1}}\\ &=\sum\limits_{i=0}^{B}\binom{A+B-1-i}{A-1}\binom{D+i+C}{D+i} \end{aligned} \]

则原式为

\[\sum\limits_{i=0}^{B}\binom{A+B-1-i}{A-1}\binom{D+C+i}{D+i} \]

2. 范德蒙德卷积

\[\sum\limits_{i=0}^k\binom{n}{i}\binom{m}{k-i} = \binom{n+m}{k} \]

\[\begin{aligned} LHS&=\sum\limits_{i=0}^k[z^i] (1+z)^n \cdot [z^{k-i}] (1+z)^m\\ &=[z^k] (1+z)^{n+m}\\ &=RHS \end{aligned} \]

3. 卡特兰数

卡特兰数

\[C_n = \begin{cases} \sum\limits_{i=0}^{n-1}C_iC_{n-1-i}, & n\ge2\\ 1, & n = 0,1 \end{cases} \]

\(f(z) = \sum\limits_{i\ge0}C_iz^i\),有

\[zf^2(z)=f(z) \]

解得

\[f(z) = \frac{1 \pm \sqrt {1 - 4z}}{2z} \]

其中

\[(1-4z)^{\frac{1}{2}}=\sum\limits_{k\ge0}\binom{\frac{1}{2}}{k}(-1)^k4^kz^k \]

其中

\[\begin{aligned} \binom{\frac{1}{2}}{0}&=1\\ k\ge1,\binom{\frac{1}{2}}{k}&= \frac{\frac{1}{2}^{\underline{k}}}{k!}\\ &=\frac{1}{k!}\prod_{i=0}^{k-1}(\frac{1}{2}-i)\\ &=\frac{(-1)^k}{2^kk!}\prod_{i=0}^{k-1}(2i-1)\\ &=\frac{(-1)^{k+1}}{2^kk!}\frac{(2k-2)!}{2^{k-1}(k-1)!}\\ &=\frac{(-1)^{k+1}}{2^{2k-1}k}\frac{(2k-2)!}{(k-1)!(k-1)!}\\ &=\frac{(-1)^{k+1}}{2^{2k-1}k}\binom{2k-2}{k-1}\\ \end{aligned} \]

\[\begin{aligned} (1-4z)^{\frac{1}{2}}&=1 + \sum\limits_{k\ge1}\frac{(-1)^{k+1}}{2^{2k-1}k}\binom{2k-2}{k-1}(-1)^{k}4^kz^k\\ &= 1 + 2\sum\limits_{k\ge1}\binom{2k-2}{k-1}(-1)^{2k+1}k^{-1}z^k\\ &= 1 - 2\sum\limits_{k\ge1}\binom{2k-2}{k-1}k^{-1}z^k \end{aligned} \]

\[f(z) = \frac{1\pm (1 - 2\sum\limits_{k\ge1}\binom{2k-2}{k-1}k^{-1}z^k)}{2z} \]

若取 \(+\)

\[f(z) = \frac{1}{2}z^{-1}-\sum\limits_{k\ge0}\binom{2k}{k}(k+1)^{-1}z^k \]

出现了负指数,与生成函数的定义矛盾,则舍弃这个根,取 \(-\)

\[f(z) = \sum\limits_{k\ge0}\binom{2k}{k}(k+1)^{-1}z^k \]

\[C_n = \frac{\binom{2n}{n}}{n+1} \]

2.4.3. 组合计数

普通型生成函数可以用来解决无标号的计数问题

1. 例一

确定可以由苹果、香蕉、橘子和梨袋装水果的袋数 \(a_n\),其中在每个袋子中苹果数是偶数,香蕉数是 \(5\) 的倍数,橘子数最多是 \(4\) 个,而梨的个数为 \(0\)\(1\)

题目要求计算苹果、香蕉、橘子和梨的某些n-组合数。我们确定序列 \(a_0,a_1,a_2,\cdots\) 的生成函数。对于每种类型的水果引入一个因子,有

\[\begin{aligned} f(z) &= (1+z^2+z^4+z^6+\cdots)(1+z^5+z^{10}+z^{15}+\cdots)(1+z+z^2+z^3+z^4)(1+z)\\ &= \frac{1}{1-z^2}\frac{1}{1-z^5}\frac{1-z^5}{1-z}(1+z)\\ &= \frac{1}{(1-z)^2}\\ &= \sum\limits_{i\ge0}\binom{i+1}{i}z^i\\ &= \sum\limits_{i\ge0}(i+1)z^i \end{aligned} \]

\(a_n = n+1\)

2. 例二

有一元、两元、五元的纸币。求用这些纸币凑成 \(n\) 元的方案数 \(a_n\)

\[\begin{aligned} f(z) &= (1+z+z^2+z^3+\cdots)(1+z^2+z^4+\cdots)(1+z^5+z^{10}+\cdots)\\ &= \frac{1}{1-z}\frac{1}{1-z^2}\frac{1}{1-z^5} \end{aligned} \]

则有 \(a_n = [z^n]f(z)\)

3. 指数生成函数 EGF

序列 \(a\)指数生成函数(\(\text{Exponential Generating Function, EGF}\) 定义为形式幂级数:

\[\hat{f}(z) = a_0 + a_1z+a_2\frac{z^2}{2} + a_3\frac{z^3}{6} + a_4\frac{z^4}{24} + \cdots = \sum\limits_{i\ge0}a_0\frac{z^i}{i!} \]

3.1 泰勒级数

如果 \(f(x)\) 在点 \(x=x_0\) 具有任意阶导数,则幂级数

\[\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}\\=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+\cdots \]

称为 \(f(x)\) 在点 \(x_0\) 处的泰勒级数。

常见的泰勒级数,取 \(x_0 = 0\)

\[\begin{aligned} e^{x}&=\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}=1+x+\frac{1}{2 !} x^{2}+\cdots \in(-\infty,+\infty) \\ \ln (1+x)&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots, x \in(-1,1] \\ \frac{1}{1-x}&=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, x \in(-1,1) \\ \frac{1}{1+x}&=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, x \in(-1,1)\\ (1+x)^{\alpha}&=1+\sum_{n=1}^{\infty} \frac{\alpha^{\underline{n}}}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots, x \in(-1,1) \\ \sin x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}+\cdots, x \in(-\infty,+\infty) \\ \cos x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}+\cdots, x \in(-\infty,+\infty) \\ \tan x&=\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n) !} x^{2 n-1}=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7} +\cdots,x\in (-\frac{\pi}{2},\frac{\pi}{2})\\ \arctan x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+ x \in[-1,1] \\ \arcsin x&=\sum_{n=0}^{\infty} \frac{(2 n) !}{4^{n}(n !)^{2}(2 n+1)} x^{2n+1}=x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{5}{112} x^{7}+\frac{35}{1152} x^{9}+\cdots+, x \in(-1,1)\\ \end{aligned}\]

3.2. 基本运算

\(\hat{f}(z)=\sum\limits_{i\ge0}a_i\frac{z^i}{i!},\hat{g}(z)=\sum\limits_{i\ge0}b_i\frac{z^i}{i!}\)

  • 加法:\(\hat{f}(z) \pm \hat{g}(z) = (\hat{f} \pm \hat{g})(z) = \sum\limits_{i\ge0}(a_i\pm b_i)\frac{z^i}{i!}\)

  • 乘法、卷积:
    \(\hat{h}(z) \cdot \hat{g}(z) = (\hat{f} \cdot \hat{g})(z) = \sum\limits_{i\ge0} \frac{z^i}{i!}\sum\limits_{j=0}^ia_jb_{i-j}\)

3.3. 常见 EGF

\(\left<1,1,1,\cdots\right>\)\(\text{EGF}\) 为:

\[\hat{f}(z)=e^z \]

\(e^x\)\(x=0\) 处的泰勒级数。

\(\left<1,p,p^2,p^3,\cdots\right>\)\(\text{EGF}\) 为:

\[\hat{f}(z) = e^{pz} \]

\[\begin{aligned} \hat{f}(z) &= \sum\limits_{i\ge0}p^i\frac{z^i}{i!}\\ &= \sum\limits_{i\ge0}\frac{(pz)^i}{i!}\\ &= e^{pz} \end{aligned} \]

\(\left<1,-1,1,-1,1\cdots\right>\)\(\text{EGF}\) 为:

\[\hat{f}(z) = e^{-z} \]

令上一个式子的 \(p=-1\) 即得。

\(\left<A_n^0,A_n^1,A_n^2,\cdots\right>\)\(\text{EGF}\) 为:

\[\hat{f}(z) = (1+z)^n\\ \]

\[\begin{aligned} \hat{f}(z) &= \sum\limits_{i\ge0}A_n^i\frac{z^i}{i!}\\ &= \sum\limits_{i\ge0}\binom{n}{i}z^i\\ &= (1+z)^n \end{aligned} \]

\(\left<1,0,1,0,1,0,\cdots\right>\)\(\text{EGF}\) 为:

\[\hat{f}(z)=\cosh(z)=\frac{e^z+e^{-z}}{2} \]

结合第一个和第三个即得。

\(\left<0,1,0,1,0,1\cdots\right>\)\(\text{EGF}\) 为:

\[\hat{f}(z)=\sinh(z)=\frac{e^z-e^{-z}}{2} \]

结合第一个和第三个即得。

  • 对系数的变换:左移系数微分,右移系数积分。

3.4. 应用

3.4.1. 二项加法卷积

我们定义两个序列 \(a_n,b_n\) 的二项加法卷积 \(c_n=\sum\limits_{i=0}^n\dbinom{n}{i}a_ib_{n-i}\)

\(\hat{f}(z),\hat{g}(z),\hat{h}(z)\) 分别为 \(a,b,c\)\(\text{EGF}\),有:

\[\hat{h}(z) = \hat{f}(z) \cdot \hat{g}(z) \]

证明:

\[\begin{aligned} RHS&=\left(\sum\limits_{i\ge0}a_i\frac{z^i}{i!}\right)\left(\sum\limits_{i\ge0}b_i\frac{z^i}{i!}\right)\\ &=\sum\limits_{i\ge0}z^i\sum\limits_{j=0}^{i}a_jb_{i-j}\frac{1}{j!(i-j)!}\\ &=\sum\limits_{i\ge0}\frac{z^i}{i!}\sum\limits_{j=0}^{i}a_jb_{i-j}\frac{i!}{j!(i-j)!}\\ &=\sum\limits_{i\ge0}\frac{z^i}{i!}\sum\limits_{j=0}^{i}a_jb_{i-j}\binom{i}{j}\\ &=LHS \end{aligned} \]

证毕。

3.4.2. 计数

指数生成函数用来解决有标号的计数问题,看到“排列”之类的字眼就可以想到用 \(\text{EGF}\) 来解决。

1. 例一

\(3\) 只老鼠,\(4\) 头大象,\(\infty\) 只小猫咪,求 \(n\) 个动物排出一列的方案数 \(a_n\)

设出来了 \(x\) 只老鼠,\(y\) 头大象,\(z\) 只小猫咪,其中 \(x+y+z=n\),那么答案为 \(\frac{n!}{x!y!z!}\)

\[\hat{f}(z) = \left(\frac{z^0}{0!} + \frac{z^1}{1!} + \frac{z^2}{2!}+\frac{z^3}{3!}\right)\left(\frac{z^0}{0!} + \frac{z^1}{1!} + \frac{z^2}{2!}+\frac{z^3}{3!} + \frac{z^4}{4!}\right)\left(\sum\limits_{i\ge0}\frac{z^i}{i!}\right) \]

\(a_n = n! \cdot [z^n]f(z)\)

2. 例二 多重集合排列数

多种集合 \(S = \{n_1 \cdot a_1, n_2 \cdot a_2,\cdots,n_k\cdot a_k\}\),其中 \(n_1,n_2,\cdots,n_k\) 是非负整数。设 \(h_n\)\(S\)\(n\) 排列数,\(\hat{g}(z)\)\(h\)\(\text{EGF}\)。有

\[\hat{g}(z) = \prod\limits_{i=1}^k\sum\limits_{j=0}^{n_i}\frac{z^j}{j!} =\sum\limits_{i\ge0}\frac{z^i}{i!}\sum\limits_{\substack{j_1+j_2+\cdots+j_k=i\\0\le j_p\le n_p}}\binom{i}{j_1,j_2,\cdots,j_k} \]

考虑 \(\sum\)\(z^j\)\(z^i\) 的贡献即得。

\[h_n = \sum\limits_{\substack{i_1+i_2+\cdots+i_k=n\\0\le i_p\le n_p}}\binom{n}{i_1,i_2,\cdots,i_k} \]

3. 例三

求用红、绿、蓝给 \(1 \times n\) 的方格染色且红色要染偶数个的方案数 \(a_n\)

\[\begin{aligned} f(z) &= \left(\frac{z^0}{0!}+\frac{z^2}{2!}+\frac{z^4}{4!}+\cdots\right)\left(\frac{z^0}{0!}+\frac{z^1}{1!}+\frac{z^2}{2!}+\cdots\right)^2\\ &=\frac{e^z+e^{-z}}{2}(e^z)^2\\ &=\frac{1}{2}\left(e^{3x}+e^x\right)\\ &=\frac{1}{2}\sum\limits_{i\ge0}(3^i+1)\frac{z^i}{i!} \end{aligned} \]

\(a_n = n! \cdot [z^n]f(z) = \frac{1}{2}(3^i+1)\)

posted @ 2025-08-16 19:09  kuailedetongnian  阅读(15)  评论(0)    收藏  举报