基于python的数学建模---轮廓系数的确定
直接上代码
from sklearn import metrics import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn import preprocessing import pandas as pd data = pd.read_csv('tae.csv') info_scaled = preprocessing.scale(data) X = info_scaled score = [] for i in range(2, 18): km = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, random_state=0) km.fit(X) score.append(metrics.silhouette_score(X, km.labels_, metric='euclidean')) plt.figure(dpi=150) plt.plot(range(2, 18), score, marker='o') plt.xlabel('Number of clusters') plt.ylabel('silhouette_score') plt.show()

点越高,结果就越准确

浙公网安备 33010602011771号