[Java] 多线程系列之Fork/Join框架[转载]

1 工作原理

1.1 核心思想:分而治之 & 并行执行

Fork/Join框架是Java 7提供的一个用于并行执行任务的框架, 核心思想就是把大任务分割成若干个小任务最终汇总每个小任务结果后得到大任务结果,其实现思想与MapReduce有异曲同工之妙。

比如,计算1+2+…+10000,可以分割成10个子任务,每个子任务分别对1000个数进行求和,最终汇总这10个子任务的结果。

Fork/Join运行流程图如下:

1.2 工作窃取算法

Fork/Join框架使用一个巧妙的算法来平衡线程的负载,称为工作窃取(work-stealing)算法。工作窃取的运行流程图如下:

假如我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程队列一一对应,比如A线程负责处理A队列里的任务。
但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。
而在这时它们会访问同一个队列,所以为了减少窃取任务线程被窃取任务线程之间的竞争,通常会使用双端队列被窃取任务线程永远从双端队列头部拿任务执行,而窃取任务的线程永远从双端队列尾部拿任务执行。
工作窃取算法优点是充分利用线程进行并行计算,并减少了线程间的竞争,其缺点是在某些情况下还是存在竞争,比如:双端队列里只有一个任务时。并且消耗了更多的系统资源,比如创建多个线程和多个双端队列。

1.3 内部构成

Fork/Join框架主要由两部分组成(分别使用2个类来实现):

1.3.1 分割/分治任务(ForkJoinTask)

  • 分割任务。首先,我们需要有一个fork类来把大任务分割成子任务,有可能子任务还是很大,所以还需要不停的分割,直到分割出的子任务足够小。

我们要使用ForkJoin框架,必须首先创建一个ForkJoin任务。它提供在任务中执行 fork()join()操作的机制。通常情况下,我们不需要直接继承ForkJoinTask类,而只需要继承其子类,Fork/Join框架提供了以下两个子类:

  • RecursiveAction:用于没有返回结果的任务。
    java.util.concurrent.RecursiveAction
  • RecursiveTask :用于有返回结果的任务。
    java.util.concurrent.RecursiveTask

1.3.2 执行任务并合并结果(ForkJoinPool)

  • 执行任务并合并结果。分割的子任务分别放在双端队列里,然后几个启动线程分别从双端队列里获取任务执行。子任务执行完的结果都统一放在一个队列里,启动一个线程从队列里拿数据,然后合并这些数据。

ForkJoinPool 需要通过ForkJoinPool来执行,任务分割出的子任务会添加到当前工作线程所维护的双端队列中,进入队列的头部。当一个工作线程的队列里暂时没有任务时,它会随机从其他工作线程的队列的尾部获取一个任务。

2 源码解读

2.1 ForkJoinPool

ForkJoinPool代表一个需要执行的任务,真正执行这些任务的线程放在一个里面,是一个可以执行的ExcuteService。但不同的是,它采用了work-stealing模式:所有在池中的空闲线程尝试去执行其他线程创建的子任务,这样就很少有线程处于空闲状态,非常高效。

2.1.1 ForkJoinWorkerThread 对象数组[属性]

ForkJoinPool池中维护着ForkJoinWorkerThread对象数组:

/**
* Array holding all worker threads in the pool. Initialized upon
* construction. Array size must be a power of two. Updates and
* replacements are protected by scanGuard, but the array is
* always kept in a consistent enough state to be randomly
* accessed without locking by workers performing work-stealing,
* as well as other traversal-based methods in this class, so long
* as reads memory-acquire by first reading ctl. All readers must
* tolerate that some array slots may be null.
*/
ForkJoinWorkerThread[] workers;

ForkJoinWorkerThread为任务的执行线程workers数组在构造方法中初始化,其大小必须为2的n次方(方便将取模转换为移位运算)。

ForkJoinPool初始化方法:

// initialize workers array with room for 2*parallelism if possible
int n = parallelism << 1;
if (n >= MAX_ID){
    n = MAX_ID;
} else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
    n |= n >>> 1; n |= n 2; n |= n 4; n |= n 8;
}
workers = new ForkJoinWorkerThread[n + 1];

可见,数组大小parallelism属性决定,默认为处理器个数,数组默认大小为处理器数量*2,但是不能超过MAX_ID

private static final int MAX_ID = 0x7fff; // max poolIndex

2.1.2 添加线程/addWorker()

什么情况下需要添加线程呢?当新的任务到来,线程池会通知其他线程前去处理,如果这时没有处于等待的线程或者处于活动的线程非常少(这是通过ctl属性来判断的),就会往线程池中添加线程:

    /**
     * Tries to create and start a worker; minimally rolls back counts
     * on failure.
     */
    private void addWorker() {
        Throwable ex = null;
        ForkJoinWorkerThread t = null;
        try {
            t = factory.newThread(this);
        } catch (Throwable e) {
            ex = e;
        }
        if (t == null) { // null or exceptional factory return
            long c; // adjust counts
            do {} while (!UNSAFE.compareAndSwapLong
                    (this, ctlOffset, c = ctl,
                            (((c - AC_UNIT) & AC_MASK) |
                                    ((c - TC_UNIT) & TC_MASK) |
                                    (c & ~(AC_MASK|TC_MASK)))));
            // Propagate exception if originating from an external caller
            if (!tryTerminate(false) && ex != null &&
                    !(Thread.currentThread() instanceof ForkJoinWorkerThread))
                UNSAFE.throwException(ex);
        }
        else
            t.start();
    }

增加线程通过ForkJoinWorkerThreadFactory来实现,底层实现方法为:

    /**
     * Creates a ForkJoinWorkerThread operating in the given pool.
     *
     * @param pool the pool this thread works in
     * @throws NullPointerException if pool is null
     */
    protected ForkJoinWorkerThread(ForkJoinPool pool) {
        super(pool.nextWorkerName());
        this.pool = pool;
        int k = pool.registerWorker(this);
        poolIndex = k;
        eventCount = ~k & SMASK; // clear wait count
        locallyFifo = pool.locallyFifo;
        Thread.UncaughtExceptionHandler ueh = pool.ueh;
        if (ueh != null)
            setUncaughtExceptionHandler(ueh);
        setDaemon(true);
    }

可见,该线程生成后需要回调ForkJoinPool.registerWorker在线程池中完成注册:

    /**
     * Callback from ForkJoinWorkerThread constructor to
     * determine its poolIndex and record in workers array.
     *
     * @param w the worker
     * @return the worker's pool index
     */
    final int registerWorker(ForkJoinWorkerThread w) {
        /*
         * In the typical case, a new worker acquires the lock, uses
         * next available index and returns quickly. Since we should
         * not block callers (ultimately from signalWork or
         * tryPreBlock) waiting for the lock needed to do this, we
         * instead help release other workers while waiting for the
         * lock.
         */
        for (int g;;) {
            ForkJoinWorkerThread[] ws;
            if (((g = scanGuard) & SG_UNIT) == 0 &&
                    UNSAFE.compareAndSwapInt(this, scanGuardOffset,
                            g, g | SG_UNIT)) {
                int k = nextWorkerIndex;
                try {
                    if ((ws = workers) != null) { // ignore on shutdown
                        int n = ws.length;
                        if (k < 0 || k >= n || ws[k] != null) {
                            for (k = 0; k < n && ws[k] != null; ++k)
                                ;
                            if (k == n)
                                ws = workers = Arrays.copyOf(ws, n << 1);
                        }
                        ws[k] = w;
                        nextWorkerIndex = k + 1;
                        int m = g & SMASK;
                        g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
                    }
                } finally {
                    scanGuard = g;
                }
                return k;
            }
            else if ((ws = workers) != null) { // help release others
                for (ForkJoinWorkerThread u : ws) {
                    if (u != null && u.queueBase != u.queueTop) {
                        if (tryReleaseWaiter())
                            break;
                    }
                }
            }
        }
    }

2.13 顺序锁 + 循环注册新线程

整个框架大量采用顺序锁,好处是不用阻塞,不好的地方是会有额外的循环。这里也是通过循环来注册这个线程,在循环的过程中有两种情况发生:

  • compareAndSwapInt操作成功,扫描workers数组,找到一个为空的项,并把新创建的线程放在这个位置;如果没有找到,表示数组大小不够,则将数组扩大2倍;

  • compareAndSwapInt操作失败,需要循环重新尝试直接成功为止,从代码中可以看出,即使是失败了,也不忘做一些额外的事:通知其他线程去执行没有完成的任务

ForkJoinPool可以通过execute提交ForkJoinTask任务,然后通过ForkJoinWorkerThread.pushTask实现。

    /**
     * Unless terminating, forks task if within an ongoing FJ computation in the
     * current pool, else submits as external task.
     */
    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
        ForkJoinWorkerThread w;
        Thread t = Thread.currentThread();
        if (shutdown)
            throw new RejectedExecutionException();
        if ((t instanceof ForkJoinWorkerThread) && (w = (ForkJoinWorkerThread) t).pool == this)
            w.pushTask(task);
        else
            addSubmission(task);
    }

    /**
     * Arranges for (asynchronous) execution of the given task.
     *
     * @param task
     * the task
     * @throws NullPointerException
     * if the task is null
     * @throws RejectedExecutionException
     * if the task cannot be scheduled for execution
     */
    public void execute(ForkJoinTask<?> task) {
        if (task == null)
            throw new NullPointerException();
        forkOrSubmit(task);
    }

2.1.4 与ExecutorService的联系

  • 其一,继承、重载了ExecutorService
    除此之外,ForkJoinPool覆盖重载了从ExecutorService继承过来的executesubmit方法外,可以接受RunnableCallable类型的任务。

ExecutorService一样,ForkJoinPool可以调用shutdown()shutdownNow()来终止线程,会先设置每个线程的任务状态为CANCELLED,然后调用Threadinterrupt方法来终止每个线程。

  • 其二,既可以执行Runnable任务,还可以执行ForkJoinTask任务。
    ExcuteService不同的是,ForkJoinPool除了可以执行Runnable任务外,还可以执行ForkJoinTask任务; ExcuteService中处于后面的任务需要等待前面任务执行后才有机会执行,而ForkJoinPool会采用work-stealing模式帮助其他线程执行任务,即ExcuteService解决的是并发问题,而ForkJoinPool解决的是并行问题

ForkJoinPool与其他类型的ExecutorService的不同之处主要在于使用了工作窃取:池中的所有线程都尝试查找和执行提交给池的任务和/或由其他活动任务创建的任务(如果不存在则会最终会阻塞等待) 。当大多数任务产生子任务(大多数ForkJoinTasks都如此),以及从外部客户端向池提交许多小任务时,均可以实现高效处理。特别是在构造函数中将asyncMode(异步模式,默认值:true)设置为true时,ForkJoinPools也可能适用于不会join的事件形式的任务。

2.2 ForkJoinWorkerThread

ForkJoinWorkerThread继承自Thread,受ForkJoinPool支配用以执行ForkJoinTask

2.2.1 重要属性

该类中有几个重要的域:

/**
* Capacity of work-stealing queue array upon initialization.
* Must be a power of two. Initial size must be at least 4, but is
* padded to minimize cache effects.
*/
private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;

/**
* Maximum size for queue array. Must be a power of two
* less than or equal to 1 << (31 - width of array entry) to
* ensure lack of index wraparound, but is capped at a lower
* value to help users trap runaway computations.
*/
private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M

/**
* The work-stealing queue array. Size must be a power of two.
* Initialized when started (as oposed to when constructed), to
* improve memory locality.
*/
ForkJoinTask<?>[] queue;

/**
* The pool this thread works in. Accessed directly by ForkJoinTask.
*/
final ForkJoinPool pool;

/**
* Index (mod queue.length) of next queue slot to push to or pop
* from. It is written only by owner thread, and accessed by other
* threads only after reading (volatile) queueBase. Both queueTop
* and queueBase are allowed to wrap around on overflow, but
* (queueTop - queueBase) still estimates size.
*/
int queueTop;

/**
* Index (mod queue.length) of least valid queue slot, which is
* always the next position to steal from if nonempty.
*/
volatile int queueBase;

/**
* The index of most recent stealer, used as a hint to avoid
* traversal in method helpJoinTask. This is only a hint because a
* worker might have had multiple steals and this only holds one
* of them (usually the most current). Declared non-volatile,
* relying on other prevailing sync to keep reasonably current.
*/
int stealHint;

ForkJoinWorkerThread使用数组实现双端队列,用来盛放ForkJoinTask,queueTop指向对头,queueBase指向队尾。
本地线程插入任务、获取任务都在队头进行,其他线程“窃取”任务则在队尾进行。

poolIndex本线程在ForkJoinPool工作线程数组中的下标,stealHint保存了最近的窃取者(来窃取任务的工作线程)的下标(poolIndex)。

注意:这个值不准确,因为可能同时有很多窃取者窃取任务,这个值只能记录其中之一。

2.2.2 添加任务/pushTask(ForkJoinTask<?> t)

    /**
     * Pushes a task. Call only from this thread.
     *
     * @param t the task. Caller must ensure non-null.
     */
    final void pushTask(ForkJoinTask<?> t) {
        ForkJoinTask<?>[] q; int s, m;
        if ((q = queue) != null) { // ignore if queue removed
            long u = (((s = queueTop) & (m = q.length - 1)) << ASHIFT) + ABASE;
            UNSAFE.putOrderedObject(q, u, t);
            queueTop = s + 1; // or use putOrderedInt
            if ((s -= queueBase) <= 2)
                pool.signalWork();
            else if (s == m)
                growQueue();
        }
    }

首先,将任务放在queueTop指向的队列位置,再将queueTop加1。

然后,分析队列容量情况,当数组元素比较少时(1或者2),就调用signalWork()方法。signalWork()方法做了两件事:

  • 唤醒当前线程;
  • 当没有活动线程时或者线程数较少时,添加新的线程。

else if部分表示队列已满(队头指针=队列长度减1),调用growQueue()扩容。

2.2.3 插队/joinTask(ForkJoinTask<?> joinMe)

    /**
     * Possibly runs some tasks and/or blocks, until joinMe is done.
     *
     * @param joinMe the task to join
     * @return completion status on exit
     */
    final int joinTask(ForkJoinTask<?> joinMe) {
        ForkJoinTask<?> prevJoin = currentJoin;
        currentJoin = joinMe;
        for (int s, retries = MAX_HELP;;) {
            if ((s = joinMe.status) < 0) {
                currentJoin = prevJoin;
                return s;
            }
            if (retries > 0) {
                if (queueTop != queueBase) {
                    if (!localHelpJoinTask(joinMe))
                        retries = 0; // cannot help
                }
                else if (retries == MAX_HELP >>> 1) {
                    --retries; // check uncommon case
                    if (tryDeqAndExec(joinMe) >= 0)
                        Thread.yield(); // for politeness
                }
                else
                    retries = helpJoinTask(joinMe) ? MAX_HELP : retries - 1;
            }
            else {
                retries = MAX_HELP; // restart if not done
                pool.tryAwaitJoin(joinMe);
            }
        }
    }

join操作类似插队,确保入参joinMe执行完毕后再进行后续操作。

这里面有个变量retries,表示可以重试的次数,最大值为MAX_HELP=16。重试的过程如下:

  • 判断joinMe是否已完成(joinMe.status < 0),如果是,则直接返回。

  • 判断retries是否用完了,如果是,则调用pool.tryAwaitJoin()阻塞当前线程,等待joinMe完成

    • retries大于0,首先判断当前线程的任务队列queue是否为空(queueTop != queueBase),如果不为空,调用localHelpJoinTask()方法,判断joinMe任务是否在自己的queue的队首位置,如果正好在,执行该任=务;同时,由于queue不为空,则证明自己并不是没事干,无法帮助别的线程干活(工作窃取),retries置零
      • 如果自己的queue为空了,调用helpJoinTask()方法进行工作窃取,帮助其他线程干活,反正闲着也是闲着。

帮别人干活也不是每次都能成功,如果连续8次都失败了(retries == MAX_HELP >>> 1),说明人品不行,自己还是歇会吧,调用Thread.yield()让权。不过,让权之前还会做最有一次努力,调用tryDeqAndExec(),看看自己在等的任务是否在某个线程的队尾,在的话偷过来执行掉。

2.3 ForkJoinTask

2.3.1 fork() : 异步地执行当前任务,并返回结果

当我们调用ForkJoinTaskfork方法时,程序会调用ForkJoinWorkerThreadpushTask方法异步的执行这个任务,然后立即返回结果。

    /**
     * Arranges to asynchronously execute this task. While it is not
     * necessarily enforced, it is a usage error to fork a task more
     * than once unless it has completed and been reinitialized.
     * Subsequent modifications to the state of this task or any data
     * it operates on are not necessarily consistently observable by
     * any thread other than the one executing it unless preceded by a
     * call to {@link #join} or related methods, or a call to {@link
     * #isDone} returning {@code true}.
     *
     * <p>This method may be invoked only from within {@code
     * ForkJoinPool} computations (as may be determined using method
     * {@link #inForkJoinPool}). Attempts to invoke in other contexts
     * result in exceptions or errors, possibly including {@code
     * ClassCastException}.
     *
     * @return {@code this}, to simplify usage
     */
    public final ForkJoinTask<V> fork() {
        ((ForkJoinWorkerThread) Thread.currentThread())
                .pushTask(this);
        return this;
    }

可见,fork()操作是通过调用ForkJoinWorkerThread.pushTask()实现的。该方法在上面已做分析,不再赘述。

2.3.2 join() : 阻塞当前线程,并等待获取结果

join方法的主要作用阻塞当前线程,并等待获取结果。代码如下:

    /**
     * Returns the result of the computation when it {@link #isDone is
     * done}. This method differs from {@link #get()} in that
     * abnormal completion results in {@code RuntimeException} or
     * {@code Error}, not {@code ExecutionException}, and that
     * interrupts of the calling thread do <em>not</em> cause the
     * method to abruptly return by throwing {@code
     * InterruptedException}.
     *
     * @return the computed result
     */
    public final V join() {
        if (doJoin() != NORMAL)
            return reportResult();
        else
            return getRawResult();
    }

    /**
     * Report the result of invoke or join; called only upon
     * non-normal return of internal versions.
     */
    private V reportResult() {
        int s; Throwable ex;
        if ((s = status) == CANCELLED)
            throw new CancellationException();
        if (s == EXCEPTIONAL && (ex = getThrowableException()) != null)
            UNSAFE.throwException(ex);
        return getRawResult();
    }

首先,它调用了doJoin()方法,通过doJoin()方法得到当前任务的状态来判断返回什么结果,任务状态有四种:

private static final int NORMAL = -1;
private static final int CANCELLED = -2;
private static final int EXCEPTIONAL = -3;
private static final int SIGNAL = 1;
  • 如果任务状态是已完成,则直接返回任务结果。
  • 如果任务状态是被取消,则直接抛出CancellationException
  • 如果任务状态是抛出异常,则直接抛出对应的异常。

再来看doJoin方法:

    private int doJoin() {
        int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w;
        return (s = status) < 0 ? s :
                ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
                        (w = (wt = (ForkJoinWorkerThread)t).workQueue).
// 执行任务
        tryUnpush(this) && (s = doExec()) < 0 ? s :
                                wt.pool.awaitJoin(w, this, 0L) :
// 阻塞非工作线程,直到工作线程执行完毕
                        externalAwaitDone();
    }

    final int doExec() {
        int s; boolean completed;
        if ((s = status) >= 0) {
            try {
                completed = exec();
            } catch (Throwable rex) {
                return setExceptionalCompletion(rex);
            }
            if (completed)
                s = setCompletion(NORMAL);
        }
        return s;
    }

doJoin()方法里,首先,通过查看任务的状态,看任务是否已执行完成

  • 如果执行完成, 则:直接返回任务状态;
  • 如果未执行完,则:从任务数组里取出任务并执行。
    • 如果任务顺利执行完成,则:设置任务状态为NORMAL
    • 如果任务执行出现异常,则:记录异常,并将任务状态设置为EXCEPTIONAL

3 案例演示

案例1 计算1~8的累加结果

让我们通过一个简单的需求来使用下Fork/Join框架

  • 需求:计算1~8的累加结果。

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.Future;
import java.util.concurrent.RecursiveTask;

/**
 * @author johnny-zen
 * @create-time 2023/2/11 13:54
 * @description ...
 * @reference-doc
 *  [1] 好文推荐:JAVA基础之Fork/Join框架 - baidu - https://baijiahao.baidu.com/s?id=1709429670171703195
 */
public class CountTask extends RecursiveTask<Integer> {

    private static final int THRESHHOLD = 2;
    private int start;
    private int end;

    public CountTask(int start, int end) {
        this.start = start;
        this.end = end;
    }

    @Override
    protected Integer compute() {
        System.out.println(start + " - " + end + " begin");
        int sum = 0;
        boolean canCompute = (end - start) <= THRESHHOLD;
        if (canCompute) { // 达到了计算条件,则直接执行
            for (int i = start; i <= end; i++) {
                sum += i;
            }
        } else { // 不满足计算条件,则分割任务
            int middle = (start + end) / 2;

            CountTask leftTask = new CountTask(start, middle);
            CountTask rightTask = new CountTask(middle + 1, end);

            leftTask.fork(); // 执行子任务
            rightTask.fork();
            int leftResult = leftTask.join(); // 等待子任务执行完毕
            int rightResult = rightTask.join();

            sum = leftResult + rightResult; // 合并子任务的计算结果
        }
        System.out.println(start + + end + " end");
        return sum;
    }

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        ForkJoinPool pool = new ForkJoinPool();// 默认创建包含 `Runtime.getRuntime().availableProcessors()` *2 个数的并行线程
        //ForkJoinPool pool = new ForkJoinPool(10);// 也可指定线程个数
        //ForkJoinPool pool = new ForkJoinPool(false); // 显式设置 asyncMode 为 false,同步执行 (默认值:true)

        CountTask task = new CountTask(1, 8);

        Future<Integer> future = pool.submit(task);//提交任务

        pool.shutdown();//用于优雅地关闭线程池,让线程池不再接受新的任务,并等待已提交的任务执行完成

        /** [可选步骤]
         * awaitTermination() : false = 线程池尚未关闭 / true = 线程池已经关闭
         * @reference-doc awaitTermination配和shutdown使用实例 - CSDN - https://blog.csdn.net/Fergusonf/article/details/126965564
         * */
        while(!pool.awaitTermination(3, TimeUnit.SECONDS)){//直到线程池关闭,才继续恢复执行后续主线程的程序指令
            logger.debug("The fork join pool doesn't shutdown! pool.poolSize: {}, pool.activeThreadCount: {}, pool.asyncMode: {}, pool.parallelism: {}", pool.getPoolSize(), pool.getActiveThreadCount(), pool.getAsyncMode(), pool.getParallelism());
        }

        //在执行的时候可能会抛出异常,但我们没办法在主线程里直接捕获异常,所以提供了 isCompletedAbnormally() 方法来检查任务是否已抛出异常或已被取消了,且可通过 getException方法 获取异常
        if (task.isCompletedAbnormally()) {//检查任务是否已经抛出异常或已经被取消了
            //方法返回Throwable对象,如果任务被取消了则返回CancellationException。如果任务没有完成或者没有抛出异常则返回 null
            Throwable exception = task.getException();
            System.out.println(exception);
        } else {
            // 由于每个任务是由线程池执行的,每次的执行顺序会有不同,但是,父任务肯定在所有子任务之后完成
            // 比如1-8的计算肯定在子任务1-4、5-8之后完成,但是1-4、5-8的完成顺序是不确定的。
            System.out.println("result: " + future.get());//36
        }
    }
}

output

1 - 8 begin
5 - 8 begin
1 - 4 begin
1 - 2 begin
5 - 6 begin
3 end
11 end
3 - 4 begin
7 - 8 begin
15 end
13 end
7 end
5 end
9 end
result: 36

案例2 递归读取指定目录下的所有文件列表


import java.io.File;
import java.util.LinkedList;
import java.util.List;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

/**
 * @author johnny-zen
 * @create-time 2023/2/11 15:24
 * @description 读取文件任务对象
 */
public class FileTask extends RecursiveAction {
    private File file;

    public FileTask(File file) {
        this.file = file;
    }

    @Override
    protected void compute() {
        List<FileTask> fileTasks = new LinkedList<>();

        File[] files = file.listFiles();
        if(files != null ){
            for (File file:files){
                //如果内部文件还是目录再次进行递归读取
                if(file.isDirectory()){
                    fileTasks.add(new FileTask(file));
                }else{
                    System.out.println(file.getAbsolutePath());
                }
            }
            //递归读取目录中的文件,把任务丢进去执行,然后这里进行使用join进行等待完成
            for (FileTask fileTask:invokeAll(fileTasks)){
                fileTask.join();
            }
        }
    }

    public static void main(String[] args) {
        ForkJoinPool forkJoinPool = new ForkJoinPool();
        FileTask fileTask = new FileTask(new File("E:/"));
        //采用异步提交让主线程可以做其他的事情
        forkJoinPool.execute(fileTask);

        System.out.println("主线程还可以处理其他的事件");
        for (int i = 0; i < 3; ++i) {
            System.out.println("主线程吃了" +(i+1)+ "碗饭");
        }

        //进入阻塞
        fileTask.join();
        System.out.println("所有线程执行完毕!");
    }
}

画红框的表示执行到forkJoinPool.execute不会阻塞还可以继续往下面执行

X 参考文献

posted @ 2023-02-11 14:42  千千寰宇  阅读(85)  评论(0编辑  收藏  举报