Miller-Rabin素数测试学习小计

1、Miller-Rabin是干啥的?它是用来检测一个数字(一般是很大的数字)是不是素数;

2、Miller-Rabin算法基于的两个定理:

(1)费尔马小定理:如果p是一个素数,且0<a<p,则a^(p-1)%p=1.利用费尔马小定理,对于给定的整数n,可以设计素数判定算法,通过 计算d=a^(n-1)%n来判断n的素性,当d!=1时,n肯定不是素数,当d=1时,n 很可能是素数.

(2)二次探测定理:如果p是一个素数,且0<x<p,则方程x^2%p=1的解为:x=1或x=p-1.

3、利用二次探测定理,可以再利用费尔马小定理计算a^(n-1)%n的过程中增加对整数n的二次探测,一旦发现违背二次探测条件,即得出n不是素数的结论.具体来说是这样的:如果n是素数,则(n-1)必是偶数,因此可令(n-1)=m*(2^q),其中m是正奇数,q是非负整数,考察下面的测试:

         a^(2m)%n; a^(4m)%n; …… ;a^(m*2^q)%n

若上面的式子中a^(2^i*m)%n计算出1来,我们就要看看a^(2^(i-1)*m)是不是等于1或者n-1,若既不是1也不是n-1那么我们判断不是素数。

 

 

posted @ 2013-11-28 00:11 朝拜明天19891101 阅读(...) 评论(...) 编辑 收藏