Jerry @DOA&INPAC, SJTU

Working out everything from the first principles.

导航

剖析std::function接口与实现

 <functional> 系列

目录

前言

一、std::function的原理与接口

  1.1 std::function是函数包装器

  1.2 C++注重运行时效率

  1.3 用函数指针实现多态

  1.4 std::function的接口

二、std::function的实现

2.1 类型系统

2.1.1 异常类

2.1.2 数据存储

2.1.3 辅助类

2.1.4 内存管理基类

2.1.5 仿函数调用

2.1.6 接口定义

2.1.7 类型关系

2.2 方法的功能与实现

2.2.1 多态性的体现

2.2.2 本地函数对象

2.2.3 heap函数对象

2.2.4 两种存储结构如何统一

2.2.5 根据形式区分仿函数类型

2.2.6 实现组装成接口

后记

附录

 

前言

为什么要剖析 std::function 呢?因为笔者最近在做一个 std::function 向单片机系统的移植与扩展。

后续还会有 std::bind 等标准库其他部分的移植。

 

一、std::function的原理与接口

1.1 std::function是函数包装器

std::function ,能存储任何符合模板参数的函数对象。换句话说,这些拥有一致参数类型、相同返回值类型(其实不必完全相同)的函数对象,可以由 std::function 统一包装起来。函数对象的大小是任意的、不能确定的,而C++中的类型都是固定大小的,那么,如何在一个固定大小的类型中存储任意大小的对象呢?

实际上问题还不止存储那么简单。存储了函数对象,必定是要在某一时刻调用;函数对象不是在创建的时候调用,这个特性成为延迟调用;函数对象也是对象,需要处理好构造、拷贝、移动、析构等问题——这些也需要延迟调用,但总不能再用 std::function 来解决吧?

既然 std::function 能存储不同类型的函数对象,可以说它具有多态性。C++中体现多态性的主要是虚函数,继承与多态这一套体制是可以解决这个问题的。相关资料[1] [2]中的实现利用了继承与多态,相当简洁。

 

1.2 C++注重运行时效率

利用继承与多态,我们可以让编译器帮我们搞定函数对象的析构。就这种实现而言,这是简洁而有效的方法。然而这种实现需要动态内存,在一些情况下不划算,甚至完全没有必要。C++11引入了lambda表达式,其本质也是函数对象。这个对象有多大呢?取决于捕获列表。你写lambda会捕获多少东西?很多情况下就只是一对方括号而已吧。在这种情况下,lambda表达式的对象大小只有1字节(因为不能是0字节),你却为了这没有内容的1字节要调用动态内存的函数?C++注重运行时效率,这种浪费是不能接受的。

如何避免这种浪费呢?你也许会说我检查传入的对象是不是1字节的空类型。且不论这个trait怎么实现,函数指针、捕获一个int的lambda等类型都声称自己是trivial的小对象,也不应该分配到heap中去。

之前说过,std::function 的大小是固定的,但是这个大小是可以自己定的。我们可以在 std::function 的类定义中加入一个空白的、大小适中的field,用在存放这些小对象,从而避免这些情况下的动态内存操作。同时,既然有了这片空间,也就不需要看传入的对象是不是1字节的空类型了。

而对于更大的类型,虽然这个field不足以存放函数对象,但足以存放一个指针,这种分时复用的结构可以用union来实现。这种小对象直接存储、大对象在heap上开辟空间并存储指针的方法,称为small object optimization。

在利用继承的实现中,函数对象被包装在一个子类中,std::function 中持有一个其父类的指针。然而为了效率,我们需要把空白field和这个指针union起来。union总给人一种底层的感觉,在不确定这个union到底存储的是什么的时候,当然不能通过其中的指针去调用虚函数。在这样的设计中,多态性不再能用继承体系实现了,我们需要另一种实现多态的方法。

 

1.3 用函数指针实现多态

回想一下虚函数是如何实现的?带有virtual function的类的对象中会安插vptr,这个指针指向一个vtable,这个vtable含有多个slot,里面含有指向type_info对象的指针与函数指针——对,我们需要函数指针!不知你有没有在C中实现过多态,在没有语言特性的帮助下,比较方便的方法是在struct中直接放函数指针。如果要像C++那样用上vptr和vtable,你得管理好每个类及其对应vtable的内容。你以为这种情况在C++中就有所好转吗?只有你用C++的继承体系,编译器才会帮你做这些事。想要自己建立一个从类型到vptr的映射,恐怕你得改编译器了。(更正:C++14引入了变量模板,请移步C++值多态:传统多态与类型擦除之间。)

vptr与vtable的意义是什么?其一,每个基类只对应一个vptr,大小固定,多重继承下便于管理,但这点与这篇文章的主题没有关联;其二,当基类有多个虚函数的时候,使用vptr可以节省存储对象的空间,而如果用函数指针的话,虽然少了一次寻址,但继承带来的空间overhead取决于虚函数的数量,由于至少一个,函数指针的占用的空间不会少于vptr,在虚函数数量较多的情况下,函数指针就要占用比较大的空间了。

既然我们已经无法在 std::function 中使用vptr,我们也应该尽可能减少函数指针的数量,而这又取决于这些函数的功能,进一步取决于 std::function 类的接口。

 

1.4 std::function的接口

虽然C++标准规定了 std::function 的接口就应该是这样,我还是想说说它为什么应该是这样。关于其他的一些问题,比如保存值还是保存引用等,可以参考相关资料[4]

最基本的,std::function 是一个模板类,模板参数是一个类型(注意是一个类型,不是好几个类型)。我们可以这么写:

std::function<int(double)> f;

f 是一个可调用对象,参数为 double,返回值为 int 。你也许会问,这里既规定了参数类型又规定了返回值类型,怎么就成了一个类型呢?确实是一个类型,int(double) 是一个函数类型(注意不是函数指针)。

std::function 要包装所有合适类型的对象,就必须有对应的构造函数,所以这是个模板构造函数。参数不是通用引用而是直接传值

template <typename F>
function(F);

可能是为了让编译器对空对象进行优化。同样还有一个模板赋值函数,参数是通用引用。

每个构造函数都有一个添加了 std::allocator_arg_t 作为第一个参数、内存分配器对象作为第二个参数的版本,C++17中已经移除(GCC从未提供,可能是因为 std::function 的内存分配无法自定义)。同样删除的还有 assign ,也是与内存分配器相关的。

另外有一个以 std::reference_wrapper 作为参数的赋值函数:

template <typename F>
function& operator=(std::reference_wrapper<F>) noexcept;

可以理解为模板赋值函数的特化。没有相应的构造函数。

默认构造函数、nullptr_t 构造函数、nullptr_t 拷贝赋值函数都将 std::function 对象置空。当 std::function 对象没有保存任何函数对象时, operator bool() 返回 false ,与 nullptr_t 调用 operator== 会返回 true ,如果调用将抛出 std::bad_function_call 异常。

虽然 std::function 将函数对象包装了起来,但用户还是可以获得原始对象的。target_type() 返回函数对象的 typeid ,target() 模板函数当模板参数与函数对象类型相同时返回其指针,否则返回空指针。

作为函数包装器,std::function 也是函数对象,可以通过 operator() 调用,参数按照模板参数中声明的类型传递。

还有一些接口与大部分STL设施相似,有Rule of Five规定的5个方法、 swap() ,以及 std::swap() 的特化等。可别小看这个 swap() ,它有大用处。

总之,函数对象的复制、移动、赋值、交换等操作都是需要的。对客户来说,除了两个 std::function 的相等性判定(笔者最近在尝试实现这个)以外,其他能想到的方法它都有。

 

二、std::function的实现

std::function 的实现位于 <functional> ,后续版本迁移至了 <bits/std_function.h> 。下面这段代码是GCC 4.8.1(第一个支持完整C++11的版本)中的 <functional> 头文件,共2579行,默认折叠,慎入。

   1 // <functional> -*- C++ -*-
   2 
   3 // Copyright (C) 2001-2013 Free Software Foundation, Inc.
   4 //
   5 // This file is part of the GNU ISO C++ Library.  This library is free
   6 // software; you can redistribute it and/or modify it under the
   7 // terms of the GNU General Public License as published by the
   8 // Free Software Foundation; either version 3, or (at your option)
   9 // any later version.
  10 
  11 // This library is distributed in the hope that it will be useful,
  12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 // GNU General Public License for more details.
  15 
  16 // Under Section 7 of GPL version 3, you are granted additional
  17 // permissions described in the GCC Runtime Library Exception, version
  18 // 3.1, as published by the Free Software Foundation.
  19 
  20 // You should have received a copy of the GNU General Public License and
  21 // a copy of the GCC Runtime Library Exception along with this program;
  22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
  23 // <http://www.gnu.org/licenses/>.
  24 
  25 /*
  26  * Copyright (c) 1997
  27  * Silicon Graphics Computer Systems, Inc.
  28  *
  29  * Permission to use, copy, modify, distribute and sell this software
  30  * and its documentation for any purpose is hereby granted without fee,
  31  * provided that the above copyright notice appear in all copies and
  32  * that both that copyright notice and this permission notice appear
  33  * in supporting documentation.  Silicon Graphics makes no
  34  * representations about the suitability of this software for any
  35  * purpose.  It is provided "as is" without express or implied warranty.
  36  *
  37  */
  38 
  39 /** @file include/functional
  40  *  This is a Standard C++ Library header.
  41  */
  42 
  43 #ifndef _GLIBCXX_FUNCTIONAL
  44 #define _GLIBCXX_FUNCTIONAL 1
  45 
  46 #pragma GCC system_header
  47 
  48 #include <bits/c++config.h>
  49 #include <bits/stl_function.h>
  50 
  51 #if __cplusplus >= 201103L
  52 
  53 #include <typeinfo>
  54 #include <new>
  55 #include <tuple>
  56 #include <type_traits>
  57 #include <bits/functexcept.h>
  58 #include <bits/functional_hash.h>
  59 
  60 namespace std _GLIBCXX_VISIBILITY(default)
  61 {
  62 _GLIBCXX_BEGIN_NAMESPACE_VERSION
  63 
  64   template<typename _MemberPointer>
  65     class _Mem_fn;
  66   template<typename _Tp, typename _Class>
  67     _Mem_fn<_Tp _Class::*>
  68     mem_fn(_Tp _Class::*) noexcept;
  69 
  70 _GLIBCXX_HAS_NESTED_TYPE(result_type)
  71 
  72   /// If we have found a result_type, extract it.
  73   template<bool _Has_result_type, typename _Functor>
  74     struct _Maybe_get_result_type
  75     { };
  76 
  77   template<typename _Functor>
  78     struct _Maybe_get_result_type<true, _Functor>
  79     { typedef typename _Functor::result_type result_type; };
  80 
  81   /**
  82    *  Base class for any function object that has a weak result type, as
  83    *  defined in 3.3/3 of TR1.
  84   */
  85   template<typename _Functor>
  86     struct _Weak_result_type_impl
  87     : _Maybe_get_result_type<__has_result_type<_Functor>::value, _Functor>
  88     { };
  89 
  90   /// Retrieve the result type for a function type.
  91   template<typename _Res, typename... _ArgTypes>
  92     struct _Weak_result_type_impl<_Res(_ArgTypes...)>
  93     { typedef _Res result_type; };
  94 
  95   template<typename _Res, typename... _ArgTypes>
  96     struct _Weak_result_type_impl<_Res(_ArgTypes......)>
  97     { typedef _Res result_type; };
  98 
  99   template<typename _Res, typename... _ArgTypes>
 100     struct _Weak_result_type_impl<_Res(_ArgTypes...) const>
 101     { typedef _Res result_type; };
 102 
 103   template<typename _Res, typename... _ArgTypes>
 104     struct _Weak_result_type_impl<_Res(_ArgTypes......) const>
 105     { typedef _Res result_type; };
 106 
 107   template<typename _Res, typename... _ArgTypes>
 108     struct _Weak_result_type_impl<_Res(_ArgTypes...) volatile>
 109     { typedef _Res result_type; };
 110 
 111   template<typename _Res, typename... _ArgTypes>
 112     struct _Weak_result_type_impl<_Res(_ArgTypes......) volatile>
 113     { typedef _Res result_type; };
 114 
 115   template<typename _Res, typename... _ArgTypes>
 116     struct _Weak_result_type_impl<_Res(_ArgTypes...) const volatile>
 117     { typedef _Res result_type; };
 118 
 119   template<typename _Res, typename... _ArgTypes>
 120     struct _Weak_result_type_impl<_Res(_ArgTypes......) const volatile>
 121     { typedef _Res result_type; };
 122 
 123   /// Retrieve the result type for a function reference.
 124   template<typename _Res, typename... _ArgTypes>
 125     struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
 126     { typedef _Res result_type; };
 127 
 128   template<typename _Res, typename... _ArgTypes>
 129     struct _Weak_result_type_impl<_Res(&)(_ArgTypes......)>
 130     { typedef _Res result_type; };
 131 
 132   /// Retrieve the result type for a function pointer.
 133   template<typename _Res, typename... _ArgTypes>
 134     struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
 135     { typedef _Res result_type; };
 136 
 137   template<typename _Res, typename... _ArgTypes>
 138     struct _Weak_result_type_impl<_Res(*)(_ArgTypes......)>
 139     { typedef _Res result_type; };
 140 
 141   /// Retrieve result type for a member function pointer.
 142   template<typename _Res, typename _Class, typename... _ArgTypes>
 143     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
 144     { typedef _Res result_type; };
 145 
 146   template<typename _Res, typename _Class, typename... _ArgTypes>
 147     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)>
 148     { typedef _Res result_type; };
 149 
 150   /// Retrieve result type for a const member function pointer.
 151   template<typename _Res, typename _Class, typename... _ArgTypes>
 152     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
 153     { typedef _Res result_type; };
 154 
 155   template<typename _Res, typename _Class, typename... _ArgTypes>
 156     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) const>
 157     { typedef _Res result_type; };
 158 
 159   /// Retrieve result type for a volatile member function pointer.
 160   template<typename _Res, typename _Class, typename... _ArgTypes>
 161     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
 162     { typedef _Res result_type; };
 163 
 164   template<typename _Res, typename _Class, typename... _ArgTypes>
 165     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) volatile>
 166     { typedef _Res result_type; };
 167 
 168   /// Retrieve result type for a const volatile member function pointer.
 169   template<typename _Res, typename _Class, typename... _ArgTypes>
 170     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)
 171                                   const volatile>
 172     { typedef _Res result_type; };
 173 
 174   template<typename _Res, typename _Class, typename... _ArgTypes>
 175     struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)
 176                                   const volatile>
 177     { typedef _Res result_type; };
 178 
 179   /**
 180    *  Strip top-level cv-qualifiers from the function object and let
 181    *  _Weak_result_type_impl perform the real work.
 182   */
 183   template<typename _Functor>
 184     struct _Weak_result_type
 185     : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
 186     { };
 187 
 188   /// Determines if the type _Tp derives from unary_function.
 189   template<typename _Tp>
 190     struct _Derives_from_unary_function : __sfinae_types
 191     {
 192     private:
 193       template<typename _T1, typename _Res>
 194         static __one __test(const volatile unary_function<_T1, _Res>*);
 195 
 196       // It's tempting to change "..." to const volatile void*, but
 197       // that fails when _Tp is a function type.
 198       static __two __test(...);
 199 
 200     public:
 201       static const bool value = sizeof(__test((_Tp*)0)) == 1;
 202     };
 203 
 204   /// Determines if the type _Tp derives from binary_function.
 205   template<typename _Tp>
 206     struct _Derives_from_binary_function : __sfinae_types
 207     {
 208     private:
 209       template<typename _T1, typename _T2, typename _Res>
 210         static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
 211 
 212       // It's tempting to change "..." to const volatile void*, but
 213       // that fails when _Tp is a function type.
 214       static __two __test(...);
 215 
 216     public:
 217       static const bool value = sizeof(__test((_Tp*)0)) == 1;
 218     };
 219 
 220   /**
 221    * Invoke a function object, which may be either a member pointer or a
 222    * function object. The first parameter will tell which.
 223    */
 224   template<typename _Functor, typename... _Args>
 225     inline
 226     typename enable_if<
 227              (!is_member_pointer<_Functor>::value
 228               && !is_function<_Functor>::value
 229               && !is_function<typename remove_pointer<_Functor>::type>::value),
 230              typename result_of<_Functor&(_Args&&...)>::type
 231            >::type
 232     __invoke(_Functor& __f, _Args&&... __args)
 233     {
 234       return __f(std::forward<_Args>(__args)...);
 235     }
 236 
 237   template<typename _Functor, typename... _Args>
 238     inline
 239     typename enable_if<
 240              (is_member_pointer<_Functor>::value
 241               && !is_function<_Functor>::value
 242               && !is_function<typename remove_pointer<_Functor>::type>::value),
 243              typename result_of<_Functor(_Args&&...)>::type
 244            >::type
 245     __invoke(_Functor& __f, _Args&&... __args)
 246     {
 247       return std::mem_fn(__f)(std::forward<_Args>(__args)...);
 248     }
 249 
 250   // To pick up function references (that will become function pointers)
 251   template<typename _Functor, typename... _Args>
 252     inline
 253     typename enable_if<
 254              (is_pointer<_Functor>::value
 255               && is_function<typename remove_pointer<_Functor>::type>::value),
 256              typename result_of<_Functor(_Args&&...)>::type
 257            >::type
 258     __invoke(_Functor __f, _Args&&... __args)
 259     {
 260       return __f(std::forward<_Args>(__args)...);
 261     }
 262 
 263   /**
 264    *  Knowing which of unary_function and binary_function _Tp derives
 265    *  from, derives from the same and ensures that reference_wrapper
 266    *  will have a weak result type. See cases below.
 267    */
 268   template<bool _Unary, bool _Binary, typename _Tp>
 269     struct _Reference_wrapper_base_impl;
 270 
 271   // None of the nested argument types.
 272   template<typename _Tp>
 273     struct _Reference_wrapper_base_impl<false, false, _Tp>
 274     : _Weak_result_type<_Tp>
 275     { };
 276 
 277   // Nested argument_type only.
 278   template<typename _Tp>
 279     struct _Reference_wrapper_base_impl<true, false, _Tp>
 280     : _Weak_result_type<_Tp>
 281     {
 282       typedef typename _Tp::argument_type argument_type;
 283     };
 284 
 285   // Nested first_argument_type and second_argument_type only.
 286   template<typename _Tp>
 287     struct _Reference_wrapper_base_impl<false, true, _Tp>
 288     : _Weak_result_type<_Tp>
 289     {
 290       typedef typename _Tp::first_argument_type first_argument_type;
 291       typedef typename _Tp::second_argument_type second_argument_type;
 292     };
 293 
 294   // All the nested argument types.
 295    template<typename _Tp>
 296     struct _Reference_wrapper_base_impl<true, true, _Tp>
 297     : _Weak_result_type<_Tp>
 298     {
 299       typedef typename _Tp::argument_type argument_type;
 300       typedef typename _Tp::first_argument_type first_argument_type;
 301       typedef typename _Tp::second_argument_type second_argument_type;
 302     };
 303 
 304   _GLIBCXX_HAS_NESTED_TYPE(argument_type)
 305   _GLIBCXX_HAS_NESTED_TYPE(first_argument_type)
 306   _GLIBCXX_HAS_NESTED_TYPE(second_argument_type)
 307 
 308   /**
 309    *  Derives from unary_function or binary_function when it
 310    *  can. Specializations handle all of the easy cases. The primary
 311    *  template determines what to do with a class type, which may
 312    *  derive from both unary_function and binary_function.
 313   */
 314   template<typename _Tp>
 315     struct _Reference_wrapper_base
 316     : _Reference_wrapper_base_impl<
 317       __has_argument_type<_Tp>::value,
 318       __has_first_argument_type<_Tp>::value
 319       && __has_second_argument_type<_Tp>::value,
 320       _Tp>
 321     { };
 322 
 323   // - a function type (unary)
 324   template<typename _Res, typename _T1>
 325     struct _Reference_wrapper_base<_Res(_T1)>
 326     : unary_function<_T1, _Res>
 327     { };
 328 
 329   template<typename _Res, typename _T1>
 330     struct _Reference_wrapper_base<_Res(_T1) const>
 331     : unary_function<_T1, _Res>
 332     { };
 333 
 334   template<typename _Res, typename _T1>
 335     struct _Reference_wrapper_base<_Res(_T1) volatile>
 336     : unary_function<_T1, _Res>
 337     { };
 338 
 339   template<typename _Res, typename _T1>
 340     struct _Reference_wrapper_base<_Res(_T1) const volatile>
 341     : unary_function<_T1, _Res>
 342     { };
 343 
 344   // - a function type (binary)
 345   template<typename _Res, typename _T1, typename _T2>
 346     struct _Reference_wrapper_base<_Res(_T1, _T2)>
 347     : binary_function<_T1, _T2, _Res>
 348     { };
 349 
 350   template<typename _Res, typename _T1, typename _T2>
 351     struct _Reference_wrapper_base<_Res(_T1, _T2) const>
 352     : binary_function<_T1, _T2, _Res>
 353     { };
 354 
 355   template<typename _Res, typename _T1, typename _T2>
 356     struct _Reference_wrapper_base<_Res(_T1, _T2) volatile>
 357     : binary_function<_T1, _T2, _Res>
 358     { };
 359 
 360   template<typename _Res, typename _T1, typename _T2>
 361     struct _Reference_wrapper_base<_Res(_T1, _T2) const volatile>
 362     : binary_function<_T1, _T2, _Res>
 363     { };
 364 
 365   // - a function pointer type (unary)
 366   template<typename _Res, typename _T1>
 367     struct _Reference_wrapper_base<_Res(*)(_T1)>
 368     : unary_function<_T1, _Res>
 369     { };
 370 
 371   // - a function pointer type (binary)
 372   template<typename _Res, typename _T1, typename _T2>
 373     struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
 374     : binary_function<_T1, _T2, _Res>
 375     { };
 376 
 377   // - a pointer to member function type (unary, no qualifiers)
 378   template<typename _Res, typename _T1>
 379     struct _Reference_wrapper_base<_Res (_T1::*)()>
 380     : unary_function<_T1*, _Res>
 381     { };
 382 
 383   // - a pointer to member function type (binary, no qualifiers)
 384   template<typename _Res, typename _T1, typename _T2>
 385     struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
 386     : binary_function<_T1*, _T2, _Res>
 387     { };
 388 
 389   // - a pointer to member function type (unary, const)
 390   template<typename _Res, typename _T1>
 391     struct _Reference_wrapper_base<_Res (_T1::*)() const>
 392     : unary_function<const _T1*, _Res>
 393     { };
 394 
 395   // - a pointer to member function type (binary, const)
 396   template<typename _Res, typename _T1, typename _T2>
 397     struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
 398     : binary_function<const _T1*, _T2, _Res>
 399     { };
 400 
 401   // - a pointer to member function type (unary, volatile)
 402   template<typename _Res, typename _T1>
 403     struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
 404     : unary_function<volatile _T1*, _Res>
 405     { };
 406 
 407   // - a pointer to member function type (binary, volatile)
 408   template<typename _Res, typename _T1, typename _T2>
 409     struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
 410     : binary_function<volatile _T1*, _T2, _Res>
 411     { };
 412 
 413   // - a pointer to member function type (unary, const volatile)
 414   template<typename _Res, typename _T1>
 415     struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
 416     : unary_function<const volatile _T1*, _Res>
 417     { };
 418 
 419   // - a pointer to member function type (binary, const volatile)
 420   template<typename _Res, typename _T1, typename _T2>
 421     struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
 422     : binary_function<const volatile _T1*, _T2, _Res>
 423     { };
 424 
 425   /**
 426    *  @brief Primary class template for reference_wrapper.
 427    *  @ingroup functors
 428    *  @{
 429    */
 430   template<typename _Tp>
 431     class reference_wrapper
 432     : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
 433     {
 434       _Tp* _M_data;
 435 
 436     public:
 437       typedef _Tp type;
 438 
 439       reference_wrapper(_Tp& __indata) noexcept
 440       : _M_data(std::__addressof(__indata))
 441       { }
 442 
 443       reference_wrapper(_Tp&&) = delete;
 444 
 445       reference_wrapper(const reference_wrapper<_Tp>& __inref) noexcept
 446       : _M_data(__inref._M_data)
 447       { }
 448 
 449       reference_wrapper&
 450       operator=(const reference_wrapper<_Tp>& __inref) noexcept
 451       {
 452         _M_data = __inref._M_data;
 453         return *this;
 454       }
 455 
 456       operator _Tp&() const noexcept
 457       { return this->get(); }
 458 
 459       _Tp&
 460       get() const noexcept
 461       { return *_M_data; }
 462 
 463       template<typename... _Args>
 464         typename result_of<_Tp&(_Args&&...)>::type
 465         operator()(_Args&&... __args) const
 466         {
 467           return __invoke(get(), std::forward<_Args>(__args)...);
 468         }
 469     };
 470 
 471 
 472   /// Denotes a reference should be taken to a variable.
 473   template<typename _Tp>
 474     inline reference_wrapper<_Tp>
 475     ref(_Tp& __t) noexcept
 476     { return reference_wrapper<_Tp>(__t); }
 477 
 478   /// Denotes a const reference should be taken to a variable.
 479   template<typename _Tp>
 480     inline reference_wrapper<const _Tp>
 481     cref(const _Tp& __t) noexcept
 482     { return reference_wrapper<const _Tp>(__t); }
 483 
 484   template<typename _Tp>
 485     void ref(const _Tp&&) = delete;
 486 
 487   template<typename _Tp>
 488     void cref(const _Tp&&) = delete;
 489 
 490   /// Partial specialization.
 491   template<typename _Tp>
 492     inline reference_wrapper<_Tp>
 493     ref(reference_wrapper<_Tp> __t) noexcept
 494     { return ref(__t.get()); }
 495 
 496   /// Partial specialization.
 497   template<typename _Tp>
 498     inline reference_wrapper<const _Tp>
 499     cref(reference_wrapper<_Tp> __t) noexcept
 500     { return cref(__t.get()); }
 501 
 502   // @} group functors
 503 
 504   template<typename... _Types>
 505     struct _Pack : integral_constant<size_t, sizeof...(_Types)>
 506     { };
 507 
 508   template<typename _From, typename _To, bool = _From::value == _To::value>
 509     struct _AllConvertible : false_type
 510     { };
 511 
 512   template<typename... _From, typename... _To>
 513     struct _AllConvertible<_Pack<_From...>, _Pack<_To...>, true>
 514     : __and_<is_convertible<_From, _To>...>
 515     { };
 516 
 517   template<typename _Tp1, typename _Tp2>
 518     using _NotSame = __not_<is_same<typename std::decay<_Tp1>::type,
 519                                     typename std::decay<_Tp2>::type>>;
 520 
 521   /**
 522    * Derives from @c unary_function or @c binary_function, or perhaps
 523    * nothing, depending on the number of arguments provided. The
 524    * primary template is the basis case, which derives nothing.
 525    */
 526   template<typename _Res, typename... _ArgTypes>
 527     struct _Maybe_unary_or_binary_function { };
 528 
 529   /// Derives from @c unary_function, as appropriate.
 530   template<typename _Res, typename _T1>
 531     struct _Maybe_unary_or_binary_function<_Res, _T1>
 532     : std::unary_function<_T1, _Res> { };
 533 
 534   /// Derives from @c binary_function, as appropriate.
 535   template<typename _Res, typename _T1, typename _T2>
 536     struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
 537     : std::binary_function<_T1, _T2, _Res> { };
 538 
 539   /// Implementation of @c mem_fn for member function pointers.
 540   template<typename _Res, typename _Class, typename... _ArgTypes>
 541     class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
 542     : public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
 543     {
 544       typedef _Res (_Class::*_Functor)(_ArgTypes...);
 545 
 546       template<typename _Tp, typename... _Args>
 547         _Res
 548         _M_call(_Tp&& __object, const volatile _Class *,
 549                 _Args&&... __args) const
 550         {
 551           return (std::forward<_Tp>(__object).*__pmf)
 552             (std::forward<_Args>(__args)...);
 553         }
 554 
 555       template<typename _Tp, typename... _Args>
 556         _Res
 557         _M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
 558         { return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }
 559 
 560       // Require each _Args to be convertible to corresponding _ArgTypes
 561       template<typename... _Args>
 562         using _RequireValidArgs
 563           = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 564 
 565       // Require each _Args to be convertible to corresponding _ArgTypes
 566       // and require _Tp is not _Class, _Class& or _Class*
 567       template<typename _Tp, typename... _Args>
 568         using _RequireValidArgs2
 569           = _Require<_NotSame<_Class, _Tp>, _NotSame<_Class*, _Tp>,
 570                      _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 571 
 572       // Require each _Args to be convertible to corresponding _ArgTypes
 573       // and require _Tp is _Class or derived from _Class
 574       template<typename _Tp, typename... _Args>
 575         using _RequireValidArgs3
 576           = _Require<is_base_of<_Class, _Tp>,
 577                      _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 578 
 579     public:
 580       typedef _Res result_type;
 581 
 582       explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
 583 
 584       // Handle objects
 585       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 586         _Res
 587         operator()(_Class& __object, _Args&&... __args) const
 588         { return (__object.*__pmf)(std::forward<_Args>(__args)...); }
 589 
 590       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 591         _Res
 592         operator()(_Class&& __object, _Args&&... __args) const
 593         {
 594           return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
 595         }
 596 
 597       // Handle pointers
 598       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 599         _Res
 600         operator()(_Class* __object, _Args&&... __args) const
 601         { return (__object->*__pmf)(std::forward<_Args>(__args)...); }
 602 
 603       // Handle smart pointers, references and pointers to derived
 604       template<typename _Tp, typename... _Args,
 605                typename _Req = _RequireValidArgs2<_Tp, _Args...>>
 606         _Res
 607         operator()(_Tp&& __object, _Args&&... __args) const
 608         {
 609           return _M_call(std::forward<_Tp>(__object), &__object,
 610               std::forward<_Args>(__args)...);
 611         }
 612 
 613       template<typename _Tp, typename... _Args,
 614                typename _Req = _RequireValidArgs3<_Tp, _Args...>>
 615         _Res
 616         operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
 617         { return operator()(__ref.get(), std::forward<_Args>(__args)...); }
 618 
 619     private:
 620       _Functor __pmf;
 621     };
 622 
 623   /// Implementation of @c mem_fn for const member function pointers.
 624   template<typename _Res, typename _Class, typename... _ArgTypes>
 625     class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
 626     : public _Maybe_unary_or_binary_function<_Res, const _Class*,
 627                                              _ArgTypes...>
 628     {
 629       typedef _Res (_Class::*_Functor)(_ArgTypes...) const;
 630 
 631       template<typename _Tp, typename... _Args>
 632         _Res
 633         _M_call(_Tp&& __object, const volatile _Class *,
 634                 _Args&&... __args) const
 635         {
 636           return (std::forward<_Tp>(__object).*__pmf)
 637             (std::forward<_Args>(__args)...);
 638         }
 639 
 640       template<typename _Tp, typename... _Args>
 641         _Res
 642         _M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
 643         { return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }
 644 
 645       template<typename... _Args>
 646         using _RequireValidArgs
 647           = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 648 
 649       template<typename _Tp, typename... _Args>
 650         using _RequireValidArgs2
 651           = _Require<_NotSame<_Class, _Tp>, _NotSame<const _Class*, _Tp>,
 652                      _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 653 
 654       template<typename _Tp, typename... _Args>
 655         using _RequireValidArgs3
 656           = _Require<is_base_of<_Class, _Tp>,
 657                      _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 658 
 659     public:
 660       typedef _Res result_type;
 661 
 662       explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
 663 
 664       // Handle objects
 665       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 666         _Res
 667         operator()(const _Class& __object, _Args&&... __args) const
 668         { return (__object.*__pmf)(std::forward<_Args>(__args)...); }
 669 
 670       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 671         _Res
 672         operator()(const _Class&& __object, _Args&&... __args) const
 673         {
 674           return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
 675         }
 676 
 677       // Handle pointers
 678       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 679         _Res
 680         operator()(const _Class* __object, _Args&&... __args) const
 681         { return (__object->*__pmf)(std::forward<_Args>(__args)...); }
 682 
 683       // Handle smart pointers, references and pointers to derived
 684       template<typename _Tp, typename... _Args,
 685                typename _Req = _RequireValidArgs2<_Tp, _Args...>>
 686         _Res operator()(_Tp&& __object, _Args&&... __args) const
 687         {
 688           return _M_call(std::forward<_Tp>(__object), &__object,
 689               std::forward<_Args>(__args)...);
 690         }
 691 
 692       template<typename _Tp, typename... _Args,
 693                typename _Req = _RequireValidArgs3<_Tp, _Args...>>
 694         _Res
 695         operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
 696         { return operator()(__ref.get(), std::forward<_Args>(__args)...); }
 697 
 698     private:
 699       _Functor __pmf;
 700     };
 701 
 702   /// Implementation of @c mem_fn for volatile member function pointers.
 703   template<typename _Res, typename _Class, typename... _ArgTypes>
 704     class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
 705     : public _Maybe_unary_or_binary_function<_Res, volatile _Class*,
 706                                              _ArgTypes...>
 707     {
 708       typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;
 709 
 710       template<typename _Tp, typename... _Args>
 711         _Res
 712         _M_call(_Tp&& __object, const volatile _Class *,
 713                 _Args&&... __args) const
 714         {
 715           return (std::forward<_Tp>(__object).*__pmf)
 716             (std::forward<_Args>(__args)...);
 717         }
 718 
 719       template<typename _Tp, typename... _Args>
 720         _Res
 721         _M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
 722         { return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }
 723 
 724       template<typename... _Args>
 725         using _RequireValidArgs
 726           = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 727 
 728       template<typename _Tp, typename... _Args>
 729         using _RequireValidArgs2
 730           = _Require<_NotSame<_Class, _Tp>, _NotSame<volatile _Class*, _Tp>,
 731                      _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 732 
 733       template<typename _Tp, typename... _Args>
 734         using _RequireValidArgs3
 735           = _Require<is_base_of<_Class, _Tp>,
 736                      _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 737 
 738     public:
 739       typedef _Res result_type;
 740 
 741       explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
 742 
 743       // Handle objects
 744       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 745         _Res
 746         operator()(volatile _Class& __object, _Args&&... __args) const
 747         { return (__object.*__pmf)(std::forward<_Args>(__args)...); }
 748 
 749       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 750         _Res
 751         operator()(volatile _Class&& __object, _Args&&... __args) const
 752         {
 753           return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
 754         }
 755 
 756       // Handle pointers
 757       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 758         _Res
 759         operator()(volatile _Class* __object, _Args&&... __args) const
 760         { return (__object->*__pmf)(std::forward<_Args>(__args)...); }
 761 
 762       // Handle smart pointers, references and pointers to derived
 763       template<typename _Tp, typename... _Args,
 764                typename _Req = _RequireValidArgs2<_Tp, _Args...>>
 765         _Res
 766         operator()(_Tp&& __object, _Args&&... __args) const
 767         {
 768           return _M_call(std::forward<_Tp>(__object), &__object,
 769               std::forward<_Args>(__args)...);
 770         }
 771 
 772       template<typename _Tp, typename... _Args,
 773                typename _Req = _RequireValidArgs3<_Tp, _Args...>>
 774         _Res
 775         operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
 776         { return operator()(__ref.get(), std::forward<_Args>(__args)...); }
 777 
 778     private:
 779       _Functor __pmf;
 780     };
 781 
 782   /// Implementation of @c mem_fn for const volatile member function pointers.
 783   template<typename _Res, typename _Class, typename... _ArgTypes>
 784     class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
 785     : public _Maybe_unary_or_binary_function<_Res, const volatile _Class*,
 786                                              _ArgTypes...>
 787     {
 788       typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;
 789 
 790       template<typename _Tp, typename... _Args>
 791         _Res
 792         _M_call(_Tp&& __object, const volatile _Class *,
 793                 _Args&&... __args) const
 794         {
 795           return (std::forward<_Tp>(__object).*__pmf)
 796             (std::forward<_Args>(__args)...);
 797         }
 798 
 799       template<typename _Tp, typename... _Args>
 800         _Res
 801         _M_call(_Tp&& __ptr, const volatile void *, _Args&&... __args) const
 802         { return ((*__ptr).*__pmf)(std::forward<_Args>(__args)...); }
 803 
 804       template<typename... _Args>
 805         using _RequireValidArgs
 806           = _Require<_AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 807 
 808       template<typename _Tp, typename... _Args>
 809         using _RequireValidArgs2
 810           = _Require<_NotSame<_Class, _Tp>,
 811                      _NotSame<const volatile _Class*, _Tp>,
 812                      _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 813 
 814       template<typename _Tp, typename... _Args>
 815         using _RequireValidArgs3
 816           = _Require<is_base_of<_Class, _Tp>,
 817                      _AllConvertible<_Pack<_Args...>, _Pack<_ArgTypes...>>>;
 818 
 819     public:
 820       typedef _Res result_type;
 821 
 822       explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
 823 
 824       // Handle objects
 825       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 826         _Res
 827         operator()(const volatile _Class& __object, _Args&&... __args) const
 828         { return (__object.*__pmf)(std::forward<_Args>(__args)...); }
 829 
 830       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 831         _Res
 832         operator()(const volatile _Class&& __object, _Args&&... __args) const
 833         {
 834           return (std::move(__object).*__pmf)(std::forward<_Args>(__args)...);
 835         }
 836 
 837       // Handle pointers
 838       template<typename... _Args, typename _Req = _RequireValidArgs<_Args...>>
 839         _Res
 840         operator()(const volatile _Class* __object, _Args&&... __args) const
 841         { return (__object->*__pmf)(std::forward<_Args>(__args)...); }
 842 
 843       // Handle smart pointers, references and pointers to derived
 844       template<typename _Tp, typename... _Args,
 845                typename _Req = _RequireValidArgs2<_Tp, _Args...>>
 846         _Res operator()(_Tp&& __object, _Args&&... __args) const
 847         {
 848           return _M_call(std::forward<_Tp>(__object), &__object,
 849               std::forward<_Args>(__args)...);
 850         }
 851 
 852       template<typename _Tp, typename... _Args,
 853                typename _Req = _RequireValidArgs3<_Tp, _Args...>>
 854         _Res
 855         operator()(reference_wrapper<_Tp> __ref, _Args&&... __args) const
 856         { return operator()(__ref.get(), std::forward<_Args>(__args)...); }
 857 
 858     private:
 859       _Functor __pmf;
 860     };
 861 
 862 
 863   template<typename _Tp, bool>
 864     struct _Mem_fn_const_or_non
 865     {
 866       typedef const _Tp& type;
 867     };
 868 
 869   template<typename _Tp>
 870     struct _Mem_fn_const_or_non<_Tp, false>
 871     {
 872       typedef _Tp& type;
 873     };
 874 
 875   template<typename _Res, typename _Class>
 876     class _Mem_fn<_Res _Class::*>
 877     {
 878       using __pm_type = _Res _Class::*;
 879 
 880       // This bit of genius is due to Peter Dimov, improved slightly by
 881       // Douglas Gregor.
 882       // Made less elegant to support perfect forwarding and noexcept.
 883       template<typename _Tp>
 884         auto
 885         _M_call(_Tp&& __object, const _Class *) const noexcept
 886         -> decltype(std::forward<_Tp>(__object).*std::declval<__pm_type&>())
 887         { return std::forward<_Tp>(__object).*__pm; }
 888 
 889       template<typename _Tp, typename _Up>
 890         auto
 891         _M_call(_Tp&& __object, _Up * const *) const noexcept
 892         -> decltype((*std::forward<_Tp>(__object)).*std::declval<__pm_type&>())
 893         { return (*std::forward<_Tp>(__object)).*__pm; }
 894 
 895       template<typename _Tp>
 896         auto
 897         _M_call(_Tp&& __ptr, const volatile void*) const
 898         noexcept(noexcept((*__ptr).*std::declval<__pm_type&>()))
 899         -> decltype((*__ptr).*std::declval<__pm_type&>())
 900         { return (*__ptr).*__pm; }
 901 
 902     public:
 903       explicit
 904       _Mem_fn(_Res _Class::*__pm) noexcept : __pm(__pm) { }
 905 
 906       // Handle objects
 907       _Res&
 908       operator()(_Class& __object) const noexcept
 909       { return __object.*__pm; }
 910 
 911       const _Res&
 912       operator()(const _Class& __object) const noexcept
 913       { return __object.*__pm; }
 914 
 915       _Res&&
 916       operator()(_Class&& __object) const noexcept
 917       { return std::forward<_Class>(__object).*__pm; }
 918 
 919       const _Res&&
 920       operator()(const _Class&& __object) const noexcept
 921       { return std::forward<const _Class>(__object).*__pm; }
 922 
 923       // Handle pointers
 924       _Res&
 925       operator()(_Class* __object) const noexcept
 926       { return __object->*__pm; }
 927 
 928       const _Res&
 929       operator()(const _Class* __object) const noexcept
 930       { return __object->*__pm; }
 931 
 932       // Handle smart pointers and derived
 933       template<typename _Tp, typename _Req = _Require<_NotSame<_Class*, _Tp>>>
 934         auto
 935         operator()(_Tp&& __unknown) const
 936         noexcept(noexcept(std::declval<_Mem_fn*>()->_M_call
 937                           (std::forward<_Tp>(__unknown), &__unknown)))
 938         -> decltype(this->_M_call(std::forward<_Tp>(__unknown), &__unknown))
 939         { return _M_call(std::forward<_Tp>(__unknown), &__unknown); }
 940 
 941       template<typename _Tp, typename _Req = _Require<is_base_of<_Class, _Tp>>>
 942         auto
 943         operator()(reference_wrapper<_Tp> __ref) const
 944         noexcept(noexcept(std::declval<_Mem_fn&>()(__ref.get())))
 945         -> decltype((*this)(__ref.get()))
 946         { return (*this)(__ref.get()); }
 947 
 948     private:
 949       _Res _Class::*__pm;
 950     };
 951 
 952   // _GLIBCXX_RESOLVE_LIB_DEFECTS
 953   // 2048.  Unnecessary mem_fn overloads
 954   /**
 955    *  @brief Returns a function object that forwards to the member
 956    *  pointer @a pm.
 957    *  @ingroup functors
 958    */
 959   template<typename _Tp, typename _Class>
 960     inline _Mem_fn<_Tp _Class::*>
 961     mem_fn(_Tp _Class::* __pm) noexcept
 962     {
 963       return _Mem_fn<_Tp _Class::*>(__pm);
 964     }
 965 
 966   /**
 967    *  @brief Determines if the given type _Tp is a function object
 968    *  should be treated as a subexpression when evaluating calls to
 969    *  function objects returned by bind(). [TR1 3.6.1]
 970    *  @ingroup binders
 971    */
 972   template<typename _Tp>
 973     struct is_bind_expression
 974     : public false_type { };
 975 
 976   /**
 977    *  @brief Determines if the given type _Tp is a placeholder in a
 978    *  bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
 979    *  @ingroup binders
 980    */
 981   template<typename _Tp>
 982     struct is_placeholder
 983     : public integral_constant<int, 0>
 984     { };
 985 
 986   /** @brief The type of placeholder objects defined by libstdc++.
 987    *  @ingroup binders
 988    */
 989   template<int _Num> struct _Placeholder { };
 990 
 991   _GLIBCXX_END_NAMESPACE_VERSION
 992 
 993   /** @namespace std::placeholders
 994    *  @brief ISO C++11 entities sub-namespace for functional.
 995    *  @ingroup binders
 996    */
 997   namespace placeholders
 998   {
 999   _GLIBCXX_BEGIN_NAMESPACE_VERSION
1000   /* Define a large number of placeholders. There is no way to
1001    * simplify this with variadic templates, because we're introducing
1002    * unique names for each.
1003    */
1004     extern const _Placeholder<1> _1;
1005     extern const _Placeholder<2> _2;
1006     extern const _Placeholder<3> _3;
1007     extern const _Placeholder<4> _4;
1008     extern const _Placeholder<5> _5;
1009     extern const _Placeholder<6> _6;
1010     extern const _Placeholder<7> _7;
1011     extern const _Placeholder<8> _8;
1012     extern const _Placeholder<9> _9;
1013     extern const _Placeholder<10> _10;
1014     extern const _Placeholder<11> _11;
1015     extern const _Placeholder<12> _12;
1016     extern const _Placeholder<13> _13;
1017     extern const _Placeholder<14> _14;
1018     extern const _Placeholder<15> _15;
1019     extern const _Placeholder<16> _16;
1020     extern const _Placeholder<17> _17;
1021     extern const _Placeholder<18> _18;
1022     extern const _Placeholder<19> _19;
1023     extern const _Placeholder<20> _20;
1024     extern const _Placeholder<21> _21;
1025     extern const _Placeholder<22> _22;
1026     extern const _Placeholder<23> _23;
1027     extern const _Placeholder<24> _24;
1028     extern const _Placeholder<25> _25;
1029     extern const _Placeholder<26> _26;
1030     extern const _Placeholder<27> _27;
1031     extern const _Placeholder<28> _28;
1032     extern const _Placeholder<29> _29;
1033   _GLIBCXX_END_NAMESPACE_VERSION
1034   }
1035 
1036   _GLIBCXX_BEGIN_NAMESPACE_VERSION
1037 
1038   /**
1039    *  Partial specialization of is_placeholder that provides the placeholder
1040    *  number for the placeholder objects defined by libstdc++.
1041    *  @ingroup binders
1042    */
1043   template<int _Num>
1044     struct is_placeholder<_Placeholder<_Num> >
1045     : public integral_constant<int, _Num>
1046     { };
1047 
1048   template<int _Num>
1049     struct is_placeholder<const _Placeholder<_Num> >
1050     : public integral_constant<int, _Num>
1051     { };
1052 
1053   /**
1054    * Used by _Safe_tuple_element to indicate that there is no tuple
1055    * element at this position.
1056    */
1057   struct _No_tuple_element;
1058 
1059   /**
1060    * Implementation helper for _Safe_tuple_element. This primary
1061    * template handles the case where it is safe to use @c
1062    * tuple_element.
1063    */
1064   template<std::size_t __i, typename _Tuple, bool _IsSafe>
1065     struct _Safe_tuple_element_impl
1066     : tuple_element<__i, _Tuple> { };
1067 
1068   /**
1069    * Implementation helper for _Safe_tuple_element. This partial
1070    * specialization handles the case where it is not safe to use @c
1071    * tuple_element. We just return @c _No_tuple_element.
1072    */
1073   template<std::size_t __i, typename _Tuple>
1074     struct _Safe_tuple_element_impl<__i, _Tuple, false>
1075     {
1076       typedef _No_tuple_element type;
1077     };
1078 
1079   /**
1080    * Like tuple_element, but returns @c _No_tuple_element when
1081    * tuple_element would return an error.
1082    */
1083  template<std::size_t __i, typename _Tuple>
1084    struct _Safe_tuple_element
1085    : _Safe_tuple_element_impl<__i, _Tuple,
1086                               (__i < tuple_size<_Tuple>::value)>
1087    { };
1088 
1089   /**
1090    *  Maps an argument to bind() into an actual argument to the bound
1091    *  function object [TR1 3.6.3/5]. Only the first parameter should
1092    *  be specified: the rest are used to determine among the various
1093    *  implementations. Note that, although this class is a function
1094    *  object, it isn't entirely normal because it takes only two
1095    *  parameters regardless of the number of parameters passed to the
1096    *  bind expression. The first parameter is the bound argument and
1097    *  the second parameter is a tuple containing references to the
1098    *  rest of the arguments.
1099    */
1100   template<typename _Arg,
1101            bool _IsBindExp = is_bind_expression<_Arg>::value,
1102            bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
1103     class _Mu;
1104 
1105   /**
1106    *  If the argument is reference_wrapper<_Tp>, returns the
1107    *  underlying reference. [TR1 3.6.3/5 bullet 1]
1108    */
1109   template<typename _Tp>
1110     class _Mu<reference_wrapper<_Tp>, false, false>
1111     {
1112     public:
1113       typedef _Tp& result_type;
1114 
1115       /* Note: This won't actually work for const volatile
1116        * reference_wrappers, because reference_wrapper::get() is const
1117        * but not volatile-qualified. This might be a defect in the TR.
1118        */
1119       template<typename _CVRef, typename _Tuple>
1120         result_type
1121         operator()(_CVRef& __arg, _Tuple&) const volatile
1122         { return __arg.get(); }
1123     };
1124 
1125   /**
1126    *  If the argument is a bind expression, we invoke the underlying
1127    *  function object with the same cv-qualifiers as we are given and
1128    *  pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
1129    */
1130   template<typename _Arg>
1131     class _Mu<_Arg, true, false>
1132     {
1133     public:
1134       template<typename _CVArg, typename... _Args>
1135         auto
1136         operator()(_CVArg& __arg,
1137                    tuple<_Args...>& __tuple) const volatile
1138         -> decltype(__arg(declval<_Args>()...))
1139         {
1140           // Construct an index tuple and forward to __call
1141           typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
1142             _Indexes;
1143           return this->__call(__arg, __tuple, _Indexes());
1144         }
1145 
1146     private:
1147       // Invokes the underlying function object __arg by unpacking all
1148       // of the arguments in the tuple.
1149       template<typename _CVArg, typename... _Args, std::size_t... _Indexes>
1150         auto
1151         __call(_CVArg& __arg, tuple<_Args...>& __tuple,
1152                const _Index_tuple<_Indexes...>&) const volatile
1153         -> decltype(__arg(declval<_Args>()...))
1154         {
1155           return __arg(std::forward<_Args>(get<_Indexes>(__tuple))...);
1156         }
1157     };
1158 
1159   /**
1160    *  If the argument is a placeholder for the Nth argument, returns
1161    *  a reference to the Nth argument to the bind function object.
1162    *  [TR1 3.6.3/5 bullet 3]
1163    */
1164   template<typename _Arg>
1165     class _Mu<_Arg, false, true>
1166     {
1167     public:
1168       template<typename _Signature> class result;
1169 
1170       template<typename _CVMu, typename _CVArg, typename _Tuple>
1171         class result<_CVMu(_CVArg, _Tuple)>
1172         {
1173           // Add a reference, if it hasn't already been done for us.
1174           // This allows us to be a little bit sloppy in constructing
1175           // the tuple that we pass to result_of<...>.
1176           typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
1177                                                 - 1), _Tuple>::type
1178             __base_type;
1179 
1180         public:
1181           typedef typename add_rvalue_reference<__base_type>::type type;
1182         };
1183 
1184       template<typename _Tuple>
1185         typename result<_Mu(_Arg, _Tuple)>::type
1186         operator()(const volatile _Arg&, _Tuple& __tuple) const volatile
1187         {
1188           return std::forward<typename result<_Mu(_Arg, _Tuple)>::type>(
1189               ::std::get<(is_placeholder<_Arg>::value - 1)>(__tuple));
1190         }
1191     };
1192 
1193   /**
1194    *  If the argument is just a value, returns a reference to that
1195    *  value. The cv-qualifiers on the reference are the same as the
1196    *  cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
1197    */
1198   template<typename _Arg>
1199     class _Mu<_Arg, false, false>
1200     {
1201     public:
1202       template<typename _Signature> struct result;
1203 
1204       template<typename _CVMu, typename _CVArg, typename _Tuple>
1205         struct result<_CVMu(_CVArg, _Tuple)>
1206         {
1207           typedef typename add_lvalue_reference<_CVArg>::type type;
1208         };
1209 
1210       // Pick up the cv-qualifiers of the argument
1211       template<typename _CVArg, typename _Tuple>
1212         _CVArg&&
1213         operator()(_CVArg&& __arg, _Tuple&) const volatile
1214         { return std::forward<_CVArg>(__arg); }
1215     };
1216 
1217   /**
1218    *  Maps member pointers into instances of _Mem_fn but leaves all
1219    *  other function objects untouched. Used by tr1::bind(). The
1220    *  primary template handles the non--member-pointer case.
1221    */
1222   template<typename _Tp>
1223     struct _Maybe_wrap_member_pointer
1224     {
1225       typedef _Tp type;
1226 
1227       static const _Tp&
1228       __do_wrap(const _Tp& __x)
1229       { return __x; }
1230 
1231       static _Tp&&
1232       __do_wrap(_Tp&& __x)
1233       { return static_cast<_Tp&&>(__x); }
1234     };
1235 
1236   /**
1237    *  Maps member pointers into instances of _Mem_fn but leaves all
1238    *  other function objects untouched. Used by tr1::bind(). This
1239    *  partial specialization handles the member pointer case.
1240    */
1241   template<typename _Tp, typename _Class>
1242     struct _Maybe_wrap_member_pointer<_Tp _Class::*>
1243     {
1244       typedef _Mem_fn<_Tp _Class::*> type;
1245 
1246       static type
1247       __do_wrap(_Tp _Class::* __pm)
1248       { return type(__pm); }
1249     };
1250 
1251   // Specialization needed to prevent "forming reference to void" errors when
1252   // bind<void>() is called, because argument deduction instantiates
1253   // _Maybe_wrap_member_pointer<void> outside the immediate context where
1254   // SFINAE applies.
1255   template<>
1256     struct _Maybe_wrap_member_pointer<void>
1257     {
1258       typedef void type;
1259     };
1260 
1261   // std::get<I> for volatile-qualified tuples
1262   template<std::size_t _Ind, typename... _Tp>
1263     inline auto
1264     __volget(volatile tuple<_Tp...>& __tuple)
1265     -> typename tuple_element<_Ind, tuple<_Tp...>>::type volatile&
1266     { return std::get<_Ind>(const_cast<tuple<_Tp...>&>(__tuple)); }
1267 
1268   // std::get<I> for const-volatile-qualified tuples
1269   template<std::size_t _Ind, typename... _Tp>
1270     inline auto
1271     __volget(const volatile tuple<_Tp...>& __tuple)
1272     -> typename tuple_element<_Ind, tuple<_Tp...>>::type const volatile&
1273     { return std::get<_Ind>(const_cast<const tuple<_Tp...>&>(__tuple)); }
1274 
1275   /// Type of the function object returned from bind().
1276   template<typename _Signature>
1277     struct _Bind;
1278 
1279    template<typename _Functor, typename... _Bound_args>
1280     class _Bind<_Functor(_Bound_args...)>
1281     : public _Weak_result_type<_Functor>
1282     {
1283       typedef _Bind __self_type;
1284       typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
1285         _Bound_indexes;
1286 
1287       _Functor _M_f;
1288       tuple<_Bound_args...> _M_bound_args;
1289 
1290       // Call unqualified
1291       template<typename _Result, typename... _Args, std::size_t... _Indexes>
1292         _Result
1293         __call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
1294         {
1295           return _M_f(_Mu<_Bound_args>()
1296                       (get<_Indexes>(_M_bound_args), __args)...);
1297         }
1298 
1299       // Call as const
1300       template<typename _Result, typename... _Args, std::size_t... _Indexes>
1301         _Result
1302         __call_c(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
1303         {
1304           return _M_f(_Mu<_Bound_args>()
1305                       (get<_Indexes>(_M_bound_args), __args)...);
1306         }
1307 
1308       // Call as volatile
1309       template<typename _Result, typename... _Args, std::size_t... _Indexes>
1310         _Result
1311         __call_v(tuple<_Args...>&& __args,
1312                  _Index_tuple<_Indexes...>) volatile
1313         {
1314           return _M_f(_Mu<_Bound_args>()
1315                       (__volget<_Indexes>(_M_bound_args), __args)...);
1316         }
1317 
1318       // Call as const volatile
1319       template<typename _Result, typename... _Args, std::size_t... _Indexes>
1320         _Result
1321         __call_c_v(tuple<_Args...>&& __args,
1322                    _Index_tuple<_Indexes...>) const volatile
1323         {
1324           return _M_f(_Mu<_Bound_args>()
1325                       (__volget<_Indexes>(_M_bound_args), __args)...);
1326         }
1327 
1328      public:
1329       template<typename... _Args>
1330         explicit _Bind(const _Functor& __f, _Args&&... __args)
1331         : _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
1332         { }
1333 
1334       template<typename... _Args>
1335         explicit _Bind(_Functor&& __f, _Args&&... __args)
1336         : _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
1337         { }
1338 
1339       _Bind(const _Bind&) = default;
1340 
1341       _Bind(_Bind&& __b)
1342       : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
1343       { }
1344 
1345       // Call unqualified
1346       template<typename... _Args, typename _Result
1347         = decltype( std::declval<_Functor>()(
1348               _Mu<_Bound_args>()( std::declval<_Bound_args&>(),
1349                                   std::declval<tuple<_Args...>&>() )... ) )>
1350         _Result
1351         operator()(_Args&&... __args)
1352         {
1353           return this->__call<_Result>(
1354               std::forward_as_tuple(std::forward<_Args>(__args)...),
1355               _Bound_indexes());
1356         }
1357 
1358       // Call as const
1359       template<typename... _Args, typename _Result
1360         = decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1361                        typename add_const<_Functor>::type>::type>()(
1362               _Mu<_Bound_args>()( std::declval<const _Bound_args&>(),
1363                                   std::declval<tuple<_Args...>&>() )... ) )>
1364         _Result
1365         operator()(_Args&&... __args) const
1366         {
1367           return this->__call_c<_Result>(
1368               std::forward_as_tuple(std::forward<_Args>(__args)...),
1369               _Bound_indexes());
1370         }
1371 
1372       // Call as volatile
1373       template<typename... _Args, typename _Result
1374         = decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1375                        typename add_volatile<_Functor>::type>::type>()(
1376               _Mu<_Bound_args>()( std::declval<volatile _Bound_args&>(),
1377                                   std::declval<tuple<_Args...>&>() )... ) )>
1378         _Result
1379         operator()(_Args&&... __args) volatile
1380         {
1381           return this->__call_v<_Result>(
1382               std::forward_as_tuple(std::forward<_Args>(__args)...),
1383               _Bound_indexes());
1384         }
1385 
1386       // Call as const volatile
1387       template<typename... _Args, typename _Result
1388         = decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1389                        typename add_cv<_Functor>::type>::type>()(
1390               _Mu<_Bound_args>()( std::declval<const volatile _Bound_args&>(),
1391                                   std::declval<tuple<_Args...>&>() )... ) )>
1392         _Result
1393         operator()(_Args&&... __args) const volatile
1394         {
1395           return this->__call_c_v<_Result>(
1396               std::forward_as_tuple(std::forward<_Args>(__args)...),
1397               _Bound_indexes());
1398         }
1399     };
1400 
1401   /// Type of the function object returned from bind<R>().
1402   template<typename _Result, typename _Signature>
1403     struct _Bind_result;
1404 
1405   template<typename _Result, typename _Functor, typename... _Bound_args>
1406     class _Bind_result<_Result, _Functor(_Bound_args...)>
1407     {
1408       typedef _Bind_result __self_type;
1409       typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
1410         _Bound_indexes;
1411 
1412       _Functor _M_f;
1413       tuple<_Bound_args...> _M_bound_args;
1414 
1415       // sfinae types
1416       template<typename _Res>
1417         struct __enable_if_void : enable_if<is_void<_Res>::value, int> { };
1418       template<typename _Res>
1419         struct __disable_if_void : enable_if<!is_void<_Res>::value, int> { };
1420 
1421       // Call unqualified
1422       template<typename _Res, typename... _Args, std::size_t... _Indexes>
1423         _Result
1424         __call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1425             typename __disable_if_void<_Res>::type = 0)
1426         {
1427           return _M_f(_Mu<_Bound_args>()
1428                       (get<_Indexes>(_M_bound_args), __args)...);
1429         }
1430 
1431       // Call unqualified, return void
1432       template<typename _Res, typename... _Args, std::size_t... _Indexes>
1433         void
1434         __call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1435             typename __enable_if_void<_Res>::type = 0)
1436         {
1437           _M_f(_Mu<_Bound_args>()
1438                (get<_Indexes>(_M_bound_args), __args)...);
1439         }
1440 
1441       // Call as const
1442       template<typename _Res, typename... _Args, std::size_t... _Indexes>
1443         _Result
1444         __call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1445             typename __disable_if_void<_Res>::type = 0) const
1446         {
1447           return _M_f(_Mu<_Bound_args>()
1448                       (get<_Indexes>(_M_bound_args), __args)...);
1449         }
1450 
1451       // Call as const, return void
1452       template<typename _Res, typename... _Args, std::size_t... _Indexes>
1453         void
1454         __call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1455             typename __enable_if_void<_Res>::type = 0) const
1456         {
1457           _M_f(_Mu<_Bound_args>()
1458                (get<_Indexes>(_M_bound_args),  __args)...);
1459         }
1460 
1461       // Call as volatile
1462       template<typename _Res, typename... _Args, std::size_t... _Indexes>
1463         _Result
1464         __call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1465             typename __disable_if_void<_Res>::type = 0) volatile
1466         {
1467           return _M_f(_Mu<_Bound_args>()
1468                       (__volget<_Indexes>(_M_bound_args), __args)...);
1469         }
1470 
1471       // Call as volatile, return void
1472       template<typename _Res, typename... _Args, std::size_t... _Indexes>
1473         void
1474         __call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1475             typename __enable_if_void<_Res>::type = 0) volatile
1476         {
1477           _M_f(_Mu<_Bound_args>()
1478                (__volget<_Indexes>(_M_bound_args), __args)...);
1479         }
1480 
1481       // Call as const volatile
1482       template<typename _Res, typename... _Args, std::size_t... _Indexes>
1483         _Result
1484         __call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1485             typename __disable_if_void<_Res>::type = 0) const volatile
1486         {
1487           return _M_f(_Mu<_Bound_args>()
1488                       (__volget<_Indexes>(_M_bound_args), __args)...);
1489         }
1490 
1491       // Call as const volatile, return void
1492       template<typename _Res, typename... _Args, std::size_t... _Indexes>
1493         void
1494         __call(tuple<_Args...>&& __args,
1495                _Index_tuple<_Indexes...>,
1496             typename __enable_if_void<_Res>::type = 0) const volatile
1497         {
1498           _M_f(_Mu<_Bound_args>()
1499                (__volget<_Indexes>(_M_bound_args), __args)...);
1500         }
1501 
1502     public:
1503       typedef _Result result_type;
1504 
1505       template<typename... _Args>
1506         explicit _Bind_result(const _Functor& __f, _Args&&... __args)
1507         : _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
1508         { }
1509 
1510       template<typename... _Args>
1511         explicit _Bind_result(_Functor&& __f, _Args&&... __args)
1512         : _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
1513         { }
1514 
1515       _Bind_result(const _Bind_result&) = default;
1516 
1517       _Bind_result(_Bind_result&& __b)
1518       : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
1519       { }
1520 
1521       // Call unqualified
1522       template<typename... _Args>
1523         result_type
1524         operator()(_Args&&... __args)
1525         {
1526           return this->__call<_Result>(
1527               std::forward_as_tuple(std::forward<_Args>(__args)...),
1528               _Bound_indexes());
1529         }
1530 
1531       // Call as const
1532       template<typename... _Args>
1533         result_type
1534         operator()(_Args&&... __args) const
1535         {
1536           return this->__call<_Result>(
1537               std::forward_as_tuple(std::forward<_Args>(__args)...),
1538               _Bound_indexes());
1539         }
1540 
1541       // Call as volatile
1542       template<typename... _Args>
1543         result_type
1544         operator()(_Args&&... __args) volatile
1545         {
1546           return this->__call<_Result>(
1547               std::forward_as_tuple(std::forward<_Args>(__args)...),
1548               _Bound_indexes());
1549         }
1550 
1551       // Call as const volatile
1552       template<typename... _Args>
1553         result_type
1554         operator()(_Args&&... __args) const volatile
1555         {
1556           return this->__call<_Result>(
1557               std::forward_as_tuple(std::forward<_Args>(__args)...),
1558               _Bound_indexes());
1559         }
1560     };
1561 
1562   /**
1563    *  @brief Class template _Bind is always a bind expression.
1564    *  @ingroup binders
1565    */
1566   template<typename _Signature>
1567     struct is_bind_expression<_Bind<_Signature> >
1568     : public true_type { };
1569 
1570   /**
1571    *  @brief Class template _Bind is always a bind expression.
1572    *  @ingroup binders
1573    */
1574   template<typename _Signature>
1575     struct is_bind_expression<const _Bind<_Signature> >
1576     : public true_type { };
1577 
1578   /**
1579    *  @brief Class template _Bind is always a bind expression.
1580    *  @ingroup binders
1581    */
1582   template<typename _Signature>
1583     struct is_bind_expression<volatile _Bind<_Signature> >
1584     : public true_type { };
1585 
1586   /**
1587    *  @brief Class template _Bind is always a bind expression.
1588    *  @ingroup binders
1589    */
1590   template<typename _Signature>
1591     struct is_bind_expression<const volatile _Bind<_Signature>>
1592     : public true_type { };
1593 
1594   /**
1595    *  @brief Class template _Bind_result is always a bind expression.
1596    *  @ingroup binders
1597    */
1598   template<typename _Result, typename _Signature>
1599     struct is_bind_expression<_Bind_result<_Result, _Signature>>
1600     : public true_type { };
1601 
1602   /**
1603    *  @brief Class template _Bind_result is always a bind expression.
1604    *  @ingroup binders
1605    */
1606   template<typename _Result, typename _Signature>
1607     struct is_bind_expression<const _Bind_result<_Result, _Signature>>
1608     : public true_type { };
1609 
1610   /**
1611    *  @brief Class template _Bind_result is always a bind expression.
1612    *  @ingroup binders
1613    */
1614   template<typename _Result, typename _Signature>
1615     struct is_bind_expression<volatile _Bind_result<_Result, _Signature>>
1616     : public true_type { };
1617 
1618   /**
1619    *  @brief Class template _Bind_result is always a bind expression.
1620    *  @ingroup binders
1621    */
1622   template<typename _Result, typename _Signature>
1623     struct is_bind_expression<const volatile _Bind_result<_Result, _Signature>>
1624     : public true_type { };
1625 
1626   // Trait type used to remove std::bind() from overload set via SFINAE
1627   // when first argument has integer type, so that std::bind() will
1628   // not be a better match than ::bind() from the BSD Sockets API.
1629   template<typename _Tp, typename _Tp2 = typename decay<_Tp>::type>
1630     using __is_socketlike = __or_<is_integral<_Tp2>, is_enum<_Tp2>>;
1631 
1632   template<bool _SocketLike, typename _Func, typename... _BoundArgs>
1633     struct _Bind_helper
1634     {
1635       typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1636         __maybe_type;
1637       typedef typename __maybe_type::type __func_type;
1638       typedef _Bind<__func_type(typename decay<_BoundArgs>::type...)> type;
1639     };
1640 
1641   // Partial specialization for is_socketlike == true, does not define
1642   // nested type so std::bind() will not participate in overload resolution
1643   // when the first argument might be a socket file descriptor.
1644   template<typename _Func, typename... _BoundArgs>
1645     struct _Bind_helper<true, _Func, _BoundArgs...>
1646     { };
1647 
1648   /**
1649    *  @brief Function template for std::bind.
1650    *  @ingroup binders
1651    */
1652   template<typename _Func, typename... _BoundArgs>
1653     inline typename
1654     _Bind_helper<__is_socketlike<_Func>::value, _Func, _BoundArgs...>::type
1655     bind(_Func&& __f, _BoundArgs&&... __args)
1656     {
1657       typedef _Bind_helper<false, _Func, _BoundArgs...> __helper_type;
1658       typedef typename __helper_type::__maybe_type __maybe_type;
1659       typedef typename __helper_type::type __result_type;
1660       return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
1661                            std::forward<_BoundArgs>(__args)...);
1662     }
1663 
1664   template<typename _Result, typename _Func, typename... _BoundArgs>
1665     struct _Bindres_helper
1666     {
1667       typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1668         __maybe_type;
1669       typedef typename __maybe_type::type __functor_type;
1670       typedef _Bind_result<_Result,
1671                            __functor_type(typename decay<_BoundArgs>::type...)>
1672         type;
1673     };
1674 
1675   /**
1676    *  @brief Function template for std::bind<R>.
1677    *  @ingroup binders
1678    */
1679   template<typename _Result, typename _Func, typename... _BoundArgs>
1680     inline
1681     typename _Bindres_helper<_Result, _Func, _BoundArgs...>::type
1682     bind(_Func&& __f, _BoundArgs&&... __args)
1683     {
1684       typedef _Bindres_helper<_Result, _Func, _BoundArgs...> __helper_type;
1685       typedef typename __helper_type::__maybe_type __maybe_type;
1686       typedef typename __helper_type::type __result_type;
1687       return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
1688                            std::forward<_BoundArgs>(__args)...);
1689     }
1690 
1691   template<typename _Signature>
1692     struct _Bind_simple;
1693 
1694   template<typename _Callable, typename... _Args>
1695     struct _Bind_simple<_Callable(_Args...)>
1696     {
1697       typedef typename result_of<_Callable(_Args...)>::type result_type;
1698 
1699       template<typename... _Args2, typename = typename
1700                enable_if< sizeof...(_Args) == sizeof...(_Args2)>::type>
1701         explicit
1702         _Bind_simple(const _Callable& __callable, _Args2&&... __args)
1703         : _M_bound(__callable, std::forward<_Args2>(__args)...)
1704         { }
1705 
1706       template<typename... _Args2, typename = typename
1707                enable_if< sizeof...(_Args) == sizeof...(_Args2)>::type>
1708         explicit
1709         _Bind_simple(_Callable&& __callable, _Args2&&... __args)
1710         : _M_bound(std::move(__callable), std::forward<_Args2>(__args)...)
1711         { }
1712 
1713       _Bind_simple(const _Bind_simple&) = default;
1714       _Bind_simple(_Bind_simple&&) = default;
1715 
1716       result_type
1717       operator()()
1718       {
1719         typedef typename _Build_index_tuple<sizeof...(_Args)>::__type _Indices;
1720         return _M_invoke(_Indices());
1721       }
1722 
1723     private:
1724 
1725       template<std::size_t... _Indices>
1726         typename result_of<_Callable(_Args...)>::type
1727         _M_invoke(_Index_tuple<_Indices...>)
1728         {
1729           // std::bind always forwards bound arguments as lvalues,
1730           // but this type can call functions which only accept rvalues.
1731           return std::forward<_Callable>(std::get<0>(_M_bound))(
1732               std::forward<_Args>(std::get<_Indices+1>(_M_bound))...);
1733         }
1734 
1735       std::tuple<_Callable, _Args...> _M_bound;
1736     };
1737 
1738   template<typename _Func, typename... _BoundArgs>
1739     struct _Bind_simple_helper
1740     {
1741       typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1742         __maybe_type;
1743       typedef typename __maybe_type::type __func_type;
1744       typedef _Bind_simple<__func_type(typename decay<_BoundArgs>::type...)>
1745                __type;
1746     };
1747 
1748   // Simplified version of std::bind for internal use, without support for
1749   // unbound arguments, placeholders or nested bind expressions.
1750   template<typename _Callable, typename... _Args>
1751     typename _Bind_simple_helper<_Callable, _Args...>::__type
1752     __bind_simple(_Callable&& __callable, _Args&&... __args)
1753     {
1754       typedef _Bind_simple_helper<_Callable, _Args...> __helper_type;
1755       typedef typename __helper_type::__maybe_type __maybe_type;
1756       typedef typename __helper_type::__type __result_type;
1757       return __result_type(
1758           __maybe_type::__do_wrap( std::forward<_Callable>(__callable)),
1759           std::forward<_Args>(__args)...);
1760     }
1761 
1762   /**
1763    *  @brief Exception class thrown when class template function's
1764    *  operator() is called with an empty target.
1765    *  @ingroup exceptions
1766    */
1767   class bad_function_call : public std::exception
1768   {
1769   public:
1770     virtual ~bad_function_call() noexcept;
1771 
1772     const char* what() const noexcept;
1773   };
1774 
1775   /**
1776    *  Trait identifying "location-invariant" types, meaning that the
1777    *  address of the object (or any of its members) will not escape.
1778    *  Also implies a trivial copy constructor and assignment operator.
1779    */
1780   template<typename _Tp>
1781     struct __is_location_invariant
1782     : integral_constant<bool, (is_pointer<_Tp>::value
1783                                || is_member_pointer<_Tp>::value)>
1784     { };
1785 
1786   class _Undefined_class;
1787 
1788   union _Nocopy_types
1789   {
1790     void*       _M_object;
1791     const void* _M_const_object;
1792     void (*_M_function_pointer)();
1793     void (_Undefined_class::*_M_member_pointer)();
1794   };
1795 
1796   union _Any_data
1797   {
1798     void*       _M_access()       { return &_M_pod_data[0]; }
1799     const void* _M_access() const { return &_M_pod_data[0]; }
1800 
1801     template<typename _Tp>
1802       _Tp&
1803       _M_access()
1804       { return *static_cast<_Tp*>(_M_access()); }
1805 
1806     template<typename _Tp>
1807       const _Tp&
1808       _M_access() const
1809       { return *static_cast<const _Tp*>(_M_access()); }
1810 
1811     _Nocopy_types _M_unused;
1812     char _M_pod_data[sizeof(_Nocopy_types)];
1813   };
1814 
1815   enum _Manager_operation
1816   {
1817     __get_type_info,
1818     __get_functor_ptr,
1819     __clone_functor,
1820     __destroy_functor
1821   };
1822 
1823   // Simple type wrapper that helps avoid annoying const problems
1824   // when casting between void pointers and pointers-to-pointers.
1825   template<typename _Tp>
1826     struct _Simple_type_wrapper
1827     {
1828       _Simple_type_wrapper(_Tp __value) : __value(__value) { }
1829 
1830       _Tp __value;
1831     };
1832 
1833   template<typename _Tp>
1834     struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
1835     : __is_location_invariant<_Tp>
1836     { };
1837 
1838   // Converts a reference to a function object into a callable
1839   // function object.
1840   template<typename _Functor>
1841     inline _Functor&
1842     __callable_functor(_Functor& __f)
1843     { return __f; }
1844 
1845   template<typename _Member, typename _Class>
1846     inline _Mem_fn<_Member _Class::*>
1847     __callable_functor(_Member _Class::* &__p)
1848     { return std::mem_fn(__p); }
1849 
1850   template<typename _Member, typename _Class>
1851     inline _Mem_fn<_Member _Class::*>
1852     __callable_functor(_Member _Class::* const &__p)
1853     { return std::mem_fn(__p); }
1854 
1855   template<typename _Member, typename _Class>
1856     inline _Mem_fn<_Member _Class::*>
1857     __callable_functor(_Member _Class::* volatile &__p)
1858     { return std::mem_fn(__p); }
1859 
1860   template<typename _Member, typename _Class>
1861     inline _Mem_fn<_Member _Class::*>
1862     __callable_functor(_Member _Class::* const volatile &__p)
1863     { return std::mem_fn(__p); }
1864 
1865   template<typename _Signature>
1866     class function;
1867 
1868   /// Base class of all polymorphic function object wrappers.
1869   class _Function_base
1870   {
1871   public:
1872     static const std::size_t _M_max_size = sizeof(_Nocopy_types);
1873     static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
1874 
1875     template<typename _Functor>
1876       class _Base_manager
1877       {
1878       protected:
1879         static const bool __stored_locally =
1880         (__is_location_invariant<_Functor>::value
1881          && sizeof(_Functor) <= _M_max_size
1882          && __alignof__(_Functor) <= _M_max_align
1883          && (_M_max_align % __alignof__(_Functor) == 0));
1884 
1885         typedef integral_constant<bool, __stored_locally> _Local_storage;
1886 
1887         // Retrieve a pointer to the function object
1888         static _Functor*
1889         _M_get_pointer(const _Any_data& __source)
1890         {
1891           const _Functor* __ptr =
1892             __stored_locally? std::__addressof(__source._M_access<_Functor>())
1893             /* have stored a pointer */ : __source._M_access<_Functor*>();
1894           return const_cast<_Functor*>(__ptr);
1895         }
1896 
1897         // Clone a location-invariant function object that fits within
1898         // an _Any_data structure.
1899         static void
1900         _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
1901         {
1902           new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
1903         }
1904 
1905         // Clone a function object that is not location-invariant or
1906         // that cannot fit into an _Any_data structure.
1907         static void
1908         _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
1909         {
1910           __dest._M_access<_Functor*>() =
1911             new _Functor(*__source._M_access<_Functor*>());
1912         }
1913 
1914         // Destroying a location-invariant object may still require
1915         // destruction.
1916         static void
1917         _M_destroy(_Any_data& __victim, true_type)
1918         {
1919           __victim._M_access<_Functor>().~_Functor();
1920         }
1921 
1922         // Destroying an object located on the heap.
1923         static void
1924         _M_destroy(_Any_data& __victim, false_type)
1925         {
1926           delete __victim._M_access<_Functor*>();
1927         }
1928 
1929       public:
1930         static bool
1931         _M_manager(_Any_data& __dest, const _Any_data& __source,
1932                    _Manager_operation __op)
1933         {
1934           switch (__op)
1935             {
1936 #ifdef __GXX_RTTI
1937             case __get_type_info:
1938               __dest._M_access<const type_info*>() = &typeid(_Functor);
1939               break;
1940 #endif
1941             case __get_functor_ptr:
1942               __dest._M_access<_Functor*>() = _M_get_pointer(__source);
1943               break;
1944 
1945             case __clone_functor:
1946               _M_clone(__dest, __source, _Local_storage());
1947               break;
1948 
1949             case __destroy_functor:
1950               _M_destroy(__dest, _Local_storage());
1951               break;
1952             }
1953           return false;
1954         }
1955 
1956         static void
1957         _M_init_functor(_Any_data& __functor, _Functor&& __f)
1958         { _M_init_functor(__functor, std::move(__f), _Local_storage()); }
1959 
1960         template<typename _Signature>
1961           static bool
1962           _M_not_empty_function(const function<_Signature>& __f)
1963           { return static_cast<bool>(__f); }
1964 
1965         template<typename _Tp>
1966           static bool
1967           _M_not_empty_function(const _Tp*& __fp)
1968           { return __fp; }
1969 
1970         template<typename _Class, typename _Tp>
1971           static bool
1972           _M_not_empty_function(_Tp _Class::* const& __mp)
1973           { return __mp; }
1974 
1975         template<typename _Tp>
1976           static bool
1977           _M_not_empty_function(const _Tp&)
1978           { return true; }
1979 
1980       private:
1981         static void
1982         _M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
1983         { new (__functor._M_access()) _Functor(std::move(__f)); }
1984 
1985         static void
1986         _M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
1987         { __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
1988       };
1989 
1990     template<typename _Functor>
1991       class _Ref_manager : public _Base_manager<_Functor*>
1992       {
1993         typedef _Function_base::_Base_manager<_Functor*> _Base;
1994 
1995       public:
1996         static bool
1997         _M_manager(_Any_data& __dest, const _Any_data& __source,
1998                    _Manager_operation __op)
1999         {
2000           switch (__op)
2001             {
2002 #ifdef __GXX_RTTI
2003             case __get_type_info:
2004               __dest._M_access<const type_info*>() = &typeid(_Functor);
2005               break;
2006 #endif
2007             case __get_functor_ptr:
2008               __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
2009               return is_const<_Functor>::value;
2010               break;
2011 
2012             default:
2013               _Base::_M_manager(__dest, __source, __op);
2014             }
2015           return false;
2016         }
2017 
2018         static void
2019         _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
2020         {
2021           _Base::_M_init_functor(__functor, std::__addressof(__f.get()));
2022         }
2023       };
2024 
2025     _Function_base() : _M_manager(0) { }
2026 
2027     ~_Function_base()
2028     {
2029       if (_M_manager)
2030         _M_manager(_M_functor, _M_functor, __destroy_functor);
2031     }
2032 
2033 
2034     bool _M_empty() const { return !_M_manager; }
2035 
2036     typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
2037                                   _Manager_operation);
2038 
2039     _Any_data     _M_functor;
2040     _Manager_type _M_manager;
2041   };
2042 
2043   template<typename _Signature, typename _Functor>
2044     class _Function_handler;
2045 
2046   template<typename _Res, typename _Functor, typename... _ArgTypes>
2047     class _Function_handler<_Res(_ArgTypes...), _Functor>
2048     : public _Function_base::_Base_manager<_Functor>
2049     {
2050       typedef _Function_base::_Base_manager<_Functor> _Base;
2051 
2052     public:
2053       static _Res
2054       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2055       {
2056         return (*_Base::_M_get_pointer(__functor))(
2057             std::forward<_ArgTypes>(__args)...);
2058       }
2059     };
2060 
2061   template<typename _Functor, typename... _ArgTypes>
2062     class _Function_handler<void(_ArgTypes...), _Functor>
2063     : public _Function_base::_Base_manager<_Functor>
2064     {
2065       typedef _Function_base::_Base_manager<_Functor> _Base;
2066 
2067      public:
2068       static void
2069       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2070       {
2071         (*_Base::_M_get_pointer(__functor))(
2072             std::forward<_ArgTypes>(__args)...);
2073       }
2074     };
2075 
2076   template<typename _Res, typename _Functor, typename... _ArgTypes>
2077     class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
2078     : public _Function_base::_Ref_manager<_Functor>
2079     {
2080       typedef _Function_base::_Ref_manager<_Functor> _Base;
2081 
2082      public:
2083       static _Res
2084       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2085       {
2086         return __callable_functor(**_Base::_M_get_pointer(__functor))(
2087               std::forward<_ArgTypes>(__args)...);
2088       }
2089     };
2090 
2091   template<typename _Functor, typename... _ArgTypes>
2092     class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
2093     : public _Function_base::_Ref_manager<_Functor>
2094     {
2095       typedef _Function_base::_Ref_manager<_Functor> _Base;
2096 
2097      public:
2098       static void
2099       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2100       {
2101         __callable_functor(**_Base::_M_get_pointer(__functor))(
2102             std::forward<_ArgTypes>(__args)...);
2103       }
2104     };
2105 
2106   template<typename _Class, typename _Member, typename _Res,
2107            typename... _ArgTypes>
2108     class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
2109     : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
2110     {
2111       typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
2112         _Base;
2113 
2114      public:
2115       static _Res
2116       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2117       {
2118         return std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
2119             std::forward<_ArgTypes>(__args)...);
2120       }
2121     };
2122 
2123   template<typename _Class, typename _Member, typename... _ArgTypes>
2124     class _Function_handler<void(_ArgTypes...), _Member _Class::*>
2125     : public _Function_base::_Base_manager<
2126                  _Simple_type_wrapper< _Member _Class::* > >
2127     {
2128       typedef _Member _Class::* _Functor;
2129       typedef _Simple_type_wrapper<_Functor> _Wrapper;
2130       typedef _Function_base::_Base_manager<_Wrapper> _Base;
2131 
2132     public:
2133       static bool
2134       _M_manager(_Any_data& __dest, const _Any_data& __source,
2135                  _Manager_operation __op)
2136       {
2137         switch (__op)
2138           {
2139 #ifdef __GXX_RTTI
2140           case __get_type_info:
2141             __dest._M_access<const type_info*>() = &typeid(_Functor);
2142             break;
2143 #endif
2144           case __get_functor_ptr:
2145             __dest._M_access<_Functor*>() =
2146               &_Base::_M_get_pointer(__source)->__value;
2147             break;
2148 
2149           default:
2150             _Base::_M_manager(__dest, __source, __op);
2151           }
2152         return false;
2153       }
2154 
2155       static void
2156       _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2157       {
2158         std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
2159             std::forward<_ArgTypes>(__args)...);
2160       }
2161     };
2162 
2163   /**
2164    *  @brief Primary class template for std::function.
2165    *  @ingroup functors
2166    *
2167    *  Polymorphic function wrapper.
2168    */
2169   template<typename _Res, typename... _ArgTypes>
2170     class function<_Res(_ArgTypes...)>
2171     : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
2172       private _Function_base
2173     {
2174       typedef _Res _Signature_type(_ArgTypes...);
2175 
2176       template<typename _Functor>
2177         using _Invoke = decltype(__callable_functor(std::declval<_Functor&>())
2178                                  (std::declval<_ArgTypes>()...) );
2179 
2180       template<typename _CallRes, typename _Res1>
2181         struct _CheckResult
2182         : is_convertible<_CallRes, _Res1> { };
2183 
2184       template<typename _CallRes>
2185         struct _CheckResult<_CallRes, void>
2186         : true_type { };
2187 
2188       template<typename _Functor>
2189         using _Callable = _CheckResult<_Invoke<_Functor>, _Res>;
2190 
2191       template<typename _Cond, typename _Tp>
2192         using _Requires = typename enable_if<_Cond::value, _Tp>::type;
2193 
2194     public:
2195       typedef _Res result_type;
2196 
2197       // [3.7.2.1] construct/copy/destroy
2198 
2199       /**
2200        *  @brief Default construct creates an empty function call wrapper.
2201        *  @post @c !(bool)*this
2202        */
2203       function() noexcept
2204       : _Function_base() { }
2205 
2206       /**
2207        *  @brief Creates an empty function call wrapper.
2208        *  @post @c !(bool)*this
2209        */
2210       function(nullptr_t) noexcept
2211       : _Function_base() { }
2212 
2213       /**
2214        *  @brief %Function copy constructor.
2215        *  @param __x A %function object with identical call signature.
2216        *  @post @c bool(*this) == bool(__x)
2217        *
2218        *  The newly-created %function contains a copy of the target of @a
2219        *  __x (if it has one).
2220        */
2221       function(const function& __x);
2222 
2223       /**
2224        *  @brief %Function move constructor.
2225        *  @param __x A %function object rvalue with identical call signature.
2226        *
2227        *  The newly-created %function contains the target of @a __x
2228        *  (if it has one).
2229        */
2230       function(function&& __x) : _Function_base()
2231       {
2232         __x.swap(*this);
2233       }
2234 
2235       // TODO: needs allocator_arg_t
2236 
2237       /**
2238        *  @brief Builds a %function that targets a copy of the incoming
2239        *  function object.
2240        *  @param __f A %function object that is callable with parameters of
2241        *  type @c T1, @c T2, ..., @c TN and returns a value convertible
2242        *  to @c Res.
2243        *
2244        *  The newly-created %function object will target a copy of 
2245        *  @a __f. If @a __f is @c reference_wrapper<F>, then this function
2246        *  object will contain a reference to the function object @c
2247        *  __f.get(). If @a __f is a NULL function pointer or NULL
2248        *  pointer-to-member, the newly-created object will be empty.
2249        *
2250        *  If @a __f is a non-NULL function pointer or an object of type @c
2251        *  reference_wrapper<F>, this function will not throw.
2252        */
2253       template<typename _Functor,
2254                typename = _Requires<_Callable<_Functor>, void>>
2255         function(_Functor);
2256 
2257       /**
2258        *  @brief %Function assignment operator.
2259        *  @param __x A %function with identical call signature.
2260        *  @post @c (bool)*this == (bool)x
2261        *  @returns @c *this
2262        *
2263        *  The target of @a __x is copied to @c *this. If @a __x has no
2264        *  target, then @c *this will be empty.
2265        *
2266        *  If @a __x targets a function pointer or a reference to a function
2267        *  object, then this operation will not throw an %exception.
2268        */
2269       function&
2270       operator=(const function& __x)
2271       {
2272         function(__x).swap(*this);
2273         return *this;
2274       }
2275 
2276       /**
2277        *  @brief %Function move-assignment operator.
2278        *  @param __x A %function rvalue with identical call signature.
2279        *  @returns @c *this
2280        *
2281        *  The target of @a __x is moved to @c *this. If @a __x has no
2282        *  target, then @c *this will be empty.
2283        *
2284        *  If @a __x targets a function pointer or a reference to a function
2285        *  object, then this operation will not throw an %exception.
2286        */
2287       function&
2288       operator=(function&& __x)
2289       {
2290         function(std::move(__x)).swap(*this);
2291         return *this;
2292       }
2293 
2294       /**
2295        *  @brief %Function assignment to zero.
2296        *  @post @c !(bool)*this
2297        *  @returns @c *this
2298        *
2299        *  The target of @c *this is deallocated, leaving it empty.
2300        */
2301       function&
2302       operator=(nullptr_t)
2303       {
2304         if (_M_manager)
2305           {
2306             _M_manager(_M_functor, _M_functor, __destroy_functor);
2307             _M_manager = 0;
2308             _M_invoker = 0;
2309           }
2310         return *this;
2311       }
2312 
2313       /**
2314        *  @brief %Function assignment to a new target.
2315        *  @param __f A %function object that is callable with parameters of
2316        *  type @c T1, @c T2, ..., @c TN and returns a value convertible
2317        *  to @c Res.
2318        *  @return @c *this
2319        *
2320        *  This  %function object wrapper will target a copy of @a
2321        *  __f. If @a __f is @c reference_wrapper<F>, then this function
2322        *  object will contain a reference to the function object @c
2323        *  __f.get(). If @a __f is a NULL function pointer or NULL
2324        *  pointer-to-member, @c this object will be empty.
2325        *
2326        *  If @a __f is a non-NULL function pointer or an object of type @c
2327        *  reference_wrapper<F>, this function will not throw.
2328        */
2329       template<typename _Functor>
2330         _Requires<_Callable<_Functor>, function&>
2331         operator=(_Functor&& __f)
2332         {
2333           function(std::forward<_Functor>(__f)).swap(*this);
2334           return *this;
2335         }
2336 
2337       /// @overload
2338       template<typename _Functor>
2339         function&
2340         operator=(reference_wrapper<_Functor> __f) noexcept
2341         {
2342           function(__f).swap(*this);
2343           return *this;
2344         }
2345 
2346       // [3.7.2.2] function modifiers
2347 
2348       /**
2349        *  @brief Swap the targets of two %function objects.
2350        *  @param __x A %function with identical call signature.
2351        *
2352        *  Swap the targets of @c this function object and @a __f. This
2353        *  function will not throw an %exception.
2354        */
2355       void swap(function& __x)
2356       {
2357         std::swap(_M_functor, __x._M_functor);
2358         std::swap(_M_manager, __x._M_manager);
2359         std::swap(_M_invoker, __x._M_invoker);
2360       }
2361 
2362       // TODO: needs allocator_arg_t
2363       /*
2364       template<typename _Functor, typename _Alloc>
2365         void
2366         assign(_Functor&& __f, const _Alloc& __a)
2367         {
2368           function(allocator_arg, __a,
2369                    std::forward<_Functor>(__f)).swap(*this);
2370         }
2371       */
2372 
2373       // [3.7.2.3] function capacity
2374 
2375       /**
2376        *  @brief Determine if the %function wrapper has a target.
2377        *
2378        *  @return @c true when this %function object contains a target,
2379        *  or @c false when it is empty.
2380        *
2381        *  This function will not throw an %exception.
2382        */
2383       explicit operator bool() const noexcept
2384       { return !_M_empty(); }
2385 
2386       // [3.7.2.4] function invocation
2387 
2388       /**
2389        *  @brief Invokes the function targeted by @c *this.
2390        *  @returns the result of the target.
2391        *  @throws bad_function_call when @c !(bool)*this
2392        *
2393        *  The function call operator invokes the target function object
2394        *  stored by @c this.
2395        */
2396       _Res operator()(_ArgTypes... __args) const;
2397 
2398 #ifdef __GXX_RTTI
2399       // [3.7.2.5] function target access
2400       /**
2401        *  @brief Determine the type of the target of this function object
2402        *  wrapper.
2403        *
2404        *  @returns the type identifier of the target function object, or
2405        *  @c typeid(void) if @c !(bool)*this.
2406        *
2407        *  This function will not throw an %exception.
2408        */
2409       const type_info& target_type() const noexcept;
2410 
2411       /**
2412        *  @brief Access the stored target function object.
2413        *
2414        *  @return Returns a pointer to the stored target function object,
2415        *  if @c typeid(Functor).equals(target_type()); otherwise, a NULL
2416        *  pointer.
2417        *
2418        * This function will not throw an %exception.
2419        */
2420       template<typename _Functor>       _Functor* target() noexcept;
2421 
2422       /// @overload
2423       template<typename _Functor> const _Functor* target() const noexcept;
2424 #endif
2425 
2426     private:
2427       typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
2428       _Invoker_type _M_invoker;
2429   };
2430 
2431   // Out-of-line member definitions.
2432   template<typename _Res, typename... _ArgTypes>
2433     function<_Res(_ArgTypes...)>::
2434     function(const function& __x)
2435     : _Function_base()
2436     {
2437       if (static_cast<bool>(__x))
2438         {
2439           _M_invoker = __x._M_invoker;
2440           _M_manager = __x._M_manager;
2441           __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
2442         }
2443     }
2444 
2445   template<typename _Res, typename... _ArgTypes>
2446     template<typename _Functor, typename>
2447       function<_Res(_ArgTypes...)>::
2448       function(_Functor __f)
2449       : _Function_base()
2450       {
2451         typedef _Function_handler<_Signature_type, _Functor> _My_handler;
2452 
2453         if (_My_handler::_M_not_empty_function(__f))
2454           {
2455             _My_handler::_M_init_functor(_M_functor, std::move(__f));
2456             _M_invoker = &_My_handler::_M_invoke;
2457             _M_manager = &_My_handler::_M_manager;
2458           }
2459       }
2460 
2461   template<typename _Res, typename... _ArgTypes>
2462     _Res
2463     function<_Res(_ArgTypes...)>::
2464     operator()(_ArgTypes... __args) const
2465     {
2466       if (_M_empty())
2467         __throw_bad_function_call();
2468       return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
2469     }
2470 
2471 #ifdef __GXX_RTTI
2472   template<typename _Res, typename... _ArgTypes>
2473     const type_info&
2474     function<_Res(_ArgTypes...)>::
2475     target_type() const noexcept
2476     {
2477       if (_M_manager)
2478         {
2479           _Any_data __typeinfo_result;
2480           _M_manager(__typeinfo_result, _M_functor, __get_type_info);
2481           return *__typeinfo_result._M_access<const type_info*>();
2482         }
2483       else
2484         return typeid(void);
2485     }
2486 
2487   template<typename _Res, typename... _ArgTypes>
2488     template<typename _Functor>
2489       _Functor*
2490       function<_Res(_ArgTypes...)>::
2491       target() noexcept
2492       {
2493         if (typeid(_Functor) == target_type() && _M_manager)
2494           {
2495             _Any_data __ptr;
2496             if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
2497                 && !is_const<_Functor>::value)
2498               return 0;
2499             else
2500               return __ptr._M_access<_Functor*>();
2501           }
2502         else
2503           return 0;
2504       }
2505 
2506   template<typename _Res, typename... _ArgTypes>
2507     template<typename _Functor>
2508       const _Functor*
2509       function<_Res(_ArgTypes...)>::
2510       target() const noexcept
2511       {
2512         if (typeid(_Functor) == target_type() && _M_manager)
2513           {
2514             _Any_data __ptr;
2515             _M_manager(__ptr, _M_functor, __get_functor_ptr);
2516             return __ptr._M_access<const _Functor*>();
2517           }
2518         else
2519           return 0;
2520       }
2521 #endif
2522 
2523   // [20.7.15.2.6] null pointer comparisons
2524 
2525   /**
2526    *  @brief Compares a polymorphic function object wrapper against 0
2527    *  (the NULL pointer).
2528    *  @returns @c true if the wrapper has no target, @c false otherwise
2529    *
2530    *  This function will not throw an %exception.
2531    */
2532   template<typename _Res, typename... _Args>
2533     inline bool
2534     operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
2535     { return !static_cast<bool>(__f); }
2536 
2537   /// @overload
2538   template<typename _Res, typename... _Args>
2539     inline bool
2540     operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
2541     { return !static_cast<bool>(__f); }
2542 
2543   /**
2544    *  @brief Compares a polymorphic function object wrapper against 0
2545    *  (the NULL pointer).
2546    *  @returns @c false if the wrapper has no target, @c true otherwise
2547    *
2548    *  This function will not throw an %exception.
2549    */
2550   template<typename _Res, typename... _Args>
2551     inline bool
2552     operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
2553     { return static_cast<bool>(__f); }
2554 
2555   /// @overload
2556   template<typename _Res, typename... _Args>
2557     inline bool
2558     operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
2559     { return static_cast<bool>(__f); }
2560 
2561   // [20.7.15.2.7] specialized algorithms
2562 
2563   /**
2564    *  @brief Swap the targets of two polymorphic function object wrappers.
2565    *
2566    *  This function will not throw an %exception.
2567    */
2568   template<typename _Res, typename... _Args>
2569     inline void
2570     swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y)
2571     { __x.swap(__y); }
2572 
2573 _GLIBCXX_END_NAMESPACE_VERSION
2574 } // namespace std
2575 
2576 #endif // C++11
2577 
2578 #endif // _GLIBCXX_FUNCTIONAL
2579
functional

这个实现的原理与上面分析的大致相同,使用函数指针实现多态,也使用了small object optimization。

注:标准库的文件的缩进是2格,有时8个空格会用一个tab代替,在将tab显示为4字节的编辑器中缩进会比较乱,我已经把tab全部替换为8个空格;很多人缩进习惯是4格,但如果把2格全部替换成4格也会乱了格式,所以以下摘录自标准库文件的代码全部都是2格缩进。

 

2.1 类型系统

类型之间的关系,无非是继承、嵌套、组合。这个实现中三者都有。

关于继承,你也许会问,我们刚才不是说了这种实现没法用继承吗?实际上没有矛盾。刚才说的继承,是接口上的继承,讲得更具体点就是要继承虚函数,是一种is-a的关系;而这里的继承,是实现上的继承,是一种is-implemented-in-terms-of的关系,在语言层面大多是private继承。

在泛型编程中,还有一个关于继承的问题,就是在继承体系的哪一层引入模板参数。

嵌套,即类中定义嵌套类型,使类之间的结构更加清晰,在泛型编程中还可以简化设计。

组合,在于一个类的对象中包含其他类的对象,本应属于对象关系的范畴,但是在这个实现中,一个类一般不会在同一个scope内出现多个对象,因此我这里就直接把对象组合的概念拿来用了。

2.1.1 异常类

首先出现的是 bad_function_call 类型,这是一个异常类,当调用空 std::function 对象时抛出:

1 class bad_function_call : public std::exception
2 {
3 public:
4   virtual ~bad_function_call() noexcept;
5   const char* what() const noexcept;
6 };

由于不是模板类(难得能在STL中发现非模板类),实现被编译好放在了目标文件中。虽然GCC开源,但既然这个类不太重要,而且稍微想想就能知道它是怎么实现的了,所以这里就不深究了。

相关的还有一个用于抛出异常的函数:

1 void __throw_bad_function_call() __attribute__((__noreturn__));

在 <bits/functexcept.h> 中。同样只有声明没有定义。

2.1.2 数据存储

有关数据存储的类共有3个:

 1 class _Undefined_class;
 2 
 3 union _Nocopy_types
 4 {
 5   void*       _M_object;
 6   const void* _M_const_object;
 7   void (*_M_function_pointer)();
 8   void (_Undefined_class::*_M_member_pointer)();
 9 };
10 
11 union _Any_data
12 {
13   void*       _M_access()       { return &_M_pod_data[0]; }
14   const void* _M_access() const { return &_M_pod_data[0]; }
15 
16   template<typename _Tp>
17     _Tp&
18     _M_access()
19     { return *static_cast<_Tp*>(_M_access()); }
20 
21   template<typename _Tp>
22     const _Tp&
23     _M_access() const
24     { return *static_cast<const _Tp*>(_M_access()); }
25 
26   _Nocopy_types _M_unused;
27   char _M_pod_data[sizeof(_Nocopy_types)];
28 };

_Undefined_class ,顾名思义,连定义都没有,只是用于声明 _Nocopy_types 中的成员指针数据域,因为同一个平台上成员指针的大小是相同的。

_Nocopy_types ,是4种类型的联合体类型,分别为指针、常量指针、函数指针与成员指针。“nocopy”指的是这几种类型指向的对象类型,而不是本身。

_Any_data ,是两种类型的联合体类型,一个是 _Nocopy_types ,另一个是 char 数组,两者大小相等。后者是POD的,POD的好处多啊,memcpy可以用,最重要的是复制不会抛异常。非模板 _M_access() 返回指针,模板 _M_access() 返回解引用的结果,两者都有 const 重载。

2.1.3 辅助类

1 enum _Manager_operation
2 {
3   __get_type_info,
4   __get_functor_ptr,
5   __clone_functor,
6   __destroy_functor
7 };

_Manager_operation ,枚举类,是前面所说控制 std::function 的函数指针需要的参数类型。定义了4种操作:获得 type_info 、获得仿函数(就是函数对象)指针、复制仿函数、销毁(析构)仿函数。从这个定义中可以看出,1.4节所说的各种功能中,需要延迟调用的,除了函数对象调用以外,都可以通过这4个功能来组合起来。我们后面还会进一步探讨这个问题。

1 template<typename _Tp>
2   struct __is_location_invariant
3   : integral_constant<bool, (is_pointer<_Tp>::value
4                              || is_member_pointer<_Tp>::value)>
5   { };

__is_location_invariant ,一个trait类,判断一个类型是不是“位置不变”的。从字面上来理解,一个类型如果是“位置不变”的,那么对于一个这种类型的对象,无论它复制到哪里,各个对象的底层表示都是相同的。在这个定义中,一个类型是“位置不变”的,当且仅当它是一个指针或成员指针,与一般的理解有所不同(更新:后来改为 template<typename _Tp> struct __is_location_invariant : is_trivially_copyable<_Tp>::type { }; ,这就比较容易理解了)。

 1 template<typename _Tp>
 2   struct _Simple_type_wrapper
 3   {
 4     _Simple_type_wrapper(_Tp __value) : __value(__value) { }
 5 
 6     _Tp __value;
 7   };
 8 
 9 template<typename _Tp>
10   struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
11   : __is_location_invariant<_Tp>
12   { };

_Simple_type_wrapper ,一个简单的包装器,用于避免 void* 与指针的指针之间类型转换的 const 问题。以及 __is_location_invariant 对 _Simple_type_wrapper 的偏特化。

2.1.4 内存管理基类

类 _Function_base 定义了一系列用于管理函数对象内存的函数,这是一个非模板类:

 1 class _Function_base
 2 {
 3 public:
 4   static const std::size_t _M_max_size = sizeof(_Nocopy_types);
 5   static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
 6 
 7   template<typename _Functor>
 8     class _Base_manager;
 9 
10   template<typename _Functor>
11     class _Ref_manager;
12 
13   _Function_base() : _M_manager(0) { }
14 
15   ~_Function_base()
16   {
17     if (_M_manager)
18       _M_manager(_M_functor, _M_functor, __destroy_functor);
19   }
20 
21   bool _M_empty() const { return !_M_manager; }
22 
23   typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
24                                 _Manager_operation);
25 
26   _Any_data     _M_functor;
27   _Manager_type _M_manager;
28 };

_Function_base 是 std::function 的实现基类,定义了两个静态常量,用于后面的trait类;两个内部类,用于包装静态方法;函数指针类型 _Manager_type 的对象 _M_manager ,用于存取 _Any_data 类型的 _M_functor 中的数据;构造函数,将函数指针置为空;析构函数,调用函数指针,销毁函数对象;_M_empty() 方法,检测内部是否存有函数对象。

我们来看其中的 _Base_manager 类:

 1 template<typename _Functor>
 2   class _Base_manager
 3   {
 4   protected:
 5     static const bool __stored_locally =
 6     (__is_location_invariant<_Functor>::value
 7      && sizeof(_Functor) <= _M_max_size
 8      && __alignof__(_Functor) <= _M_max_align
 9      && (_M_max_align % __alignof__(_Functor) == 0));
10 
11     typedef integral_constant<bool, __stored_locally> _Local_storage;
12 
13     static _Functor*
14     _M_get_pointer(const _Any_data& __source);
15 
16     static void
17     _M_clone(_Any_data& __dest, const _Any_data& __source, true_type);
18 
19     static void
20     _M_clone(_Any_data& __dest, const _Any_data& __source, false_type);
21 
22     static void
23     _M_destroy(_Any_data& __victim, true_type);
24 
25     static void
26     _M_destroy(_Any_data& __victim, false_type);
27 
28   public:
29     static bool
30     _M_manager(_Any_data& __dest, const _Any_data& __source,
31                _Manager_operation __op);
32 
33     static void
34     _M_init_functor(_Any_data& __functor, _Functor&& __f);
35 
36     template<typename _Signature>
37       static bool
38       _M_not_empty_function(const function<_Signature>& __f);
39 
40     template<typename _Tp>
41       static bool
42       _M_not_empty_function(const _Tp*& __fp);
43 
44     template<typename _Class, typename _Tp>
45       static bool
46       _M_not_empty_function(_Tp _Class::* const& __mp);
47 
48     template<typename _Tp>
49       static bool
50       _M_not_empty_function(const _Tp&);
51 
52   private:
53     static void
54     _M_init_functor(_Any_data& __functor, _Functor&& __f, true_type);
55 
56     static void
57     _M_init_functor(_Any_data& __functor, _Functor&& __f, false_type);
58   };

定义了一个静态布尔常量 __stored_locally ,它为真当且仅当 __is_location_invariant trait为真、仿函数放得下、仿函数的align符合两个要求。然后再反过来根据这个值定义trait类 _Local_storage (标准库里一般都是根据value trait来生成value)。

其余几个静态方法,顾名思义即可。有个值得思考的问题,就是为什么 _M_init_functor 是public的,没有被放进 _M_manager 呢?

再来看 _Ref_manager 类:

 1 template<typename _Functor>
 2   class _Ref_manager : public _Base_manager<_Functor*>
 3   {
 4     typedef _Function_base::_Base_manager<_Functor*> _Base;
 5 
 6   public:
 7     static bool
 8     _M_manager(_Any_data& __dest, const _Any_data& __source,
 9                _Manager_operation __op);
10 
11     static void
12     _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f);
13   };

_Ref_manager 继承自 _Base_manager 类,覆写了两个静态方法。

2.1.5 仿函数调用

起辅助作用的模板函数 __callable_functor :

 1 template<typename _Functor>
 2   inline _Functor&
 3   __callable_functor(_Functor& __f)
 4   { return __f; }
 5 
 6 template<typename _Member, typename _Class>
 7   inline _Mem_fn<_Member _Class::*>
 8   __callable_functor(_Member _Class::* &__p)
 9   { return std::mem_fn(__p); }
10 
11 template<typename _Member, typename _Class>
12   inline _Mem_fn<_Member _Class::*>
13   __callable_functor(_Member _Class::* const &__p)
14   { return std::mem_fn(__p); }
15 
16 template<typename _Member, typename _Class>
17   inline _Mem_fn<_Member _Class::*>
18   __callable_functor(_Member _Class::* volatile &__p)
19   { return std::mem_fn(__p); }
20 
21 template<typename _Member, typename _Class>
22   inline _Mem_fn<_Member _Class::*>
23   __callable_functor(_Member _Class::* const volatile &__p)
24   { return std::mem_fn(__p); }

对非成员指针类型,直接返回参数本身;对成员指针类型,返回 mem_fn() 的结果(将类对象转换为第一个参数;这个标准库函数的实现不在这篇文章中涉及),并有cv-qualified重载。它改变了调用的形式,把所有的参数都放在了小括号中。

_Function_handler 类,管理仿函数调用:

 1 template<typename _Signature, typename _Functor>
 2   class _Function_handler;
 3 
 4 template<typename _Res, typename _Functor, typename... _ArgTypes>
 5   class _Function_handler<_Res(_ArgTypes...), _Functor>
 6   : public _Function_base::_Base_manager<_Functor>
 7   {
 8     typedef _Function_base::_Base_manager<_Functor> _Base;
 9 
10   public:
11     static _Res
12     _M_invoke(const _Any_data& __functor, _ArgTypes... __args);
13   };
14 
15 template<typename _Functor, typename... _ArgTypes>
16   class _Function_handler<void(_ArgTypes...), _Functor>
17   : public _Function_base::_Base_manager<_Functor>
18   {
19     typedef _Function_base::_Base_manager<_Functor> _Base;
20 
21    public:
22     static void
23     _M_invoke(const _Any_data& __functor, _ArgTypes... __args);
24   };
25 
26 template<typename _Res, typename _Functor, typename... _ArgTypes>
27   class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
28   : public _Function_base::_Ref_manager<_Functor>
29   {
30     typedef _Function_base::_Ref_manager<_Functor> _Base;
31 
32    public:
33     static _Res
34     _M_invoke(const _Any_data& __functor, _ArgTypes... __args);
35   };
36 
37 template<typename _Functor, typename... _ArgTypes>
38   class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
39   : public _Function_base::_Ref_manager<_Functor>
40   {
41     typedef _Function_base::_Ref_manager<_Functor> _Base;
42 
43    public:
44     static void
45     _M_invoke(const _Any_data& __functor, _ArgTypes... __args);
46   };
47 
48 template<typename _Class, typename _Member, typename _Res,
49          typename... _ArgTypes>
50   class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
51   : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
52   {
53     typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
54       _Base;
55 
56    public:
57     static _Res
58     _M_invoke(const _Any_data& __functor, _ArgTypes... __args);
59   };
60 
61 template<typename _Class, typename _Member, typename... _ArgTypes>
62   class _Function_handler<void(_ArgTypes...), _Member _Class::*>
63   : public _Function_base::_Base_manager<
64                _Simple_type_wrapper< _Member _Class::* > >
65   {
66     typedef _Member _Class::* _Functor;
67     typedef _Simple_type_wrapper<_Functor> _Wrapper;
68     typedef _Function_base::_Base_manager<_Wrapper> _Base;
69 
70   public:
71     static bool
72     _M_manager(_Any_data& __dest, const _Any_data& __source,
73                _Manager_operation __op);
74 
75     static void
76     _M_invoke(const _Any_data& __functor, _ArgTypes... __args);
77   };

共有6个特化版本:返回值类型为 void 、其他;函数对象类型为 std::reference_wrapper 、成员指针、其他。

继承自 _Function_base::_Base_manager 或 _Function_base::_Ref_manager ,提供了静态方法 _M_invoke() ,用于仿函数调用。有一个覆写的 _M_manager() ,表面上看是一个偏特化有覆写,实际上是两个,因为返回非 void 的成员指针偏特化版本还继承了其对应 void 偏特化版本。

2.1.6 接口定义

终于回到伟大的 std::function 了,但是我们还得再看点别的:

 1 template<typename _Arg, typename _Result>
 2   struct unary_function
 3   {
 4     typedef _Arg     argument_type;   
 5 
 6     typedef _Result     result_type;  
 7   };
 8 
 9 template<typename _Arg1, typename _Arg2, typename _Result>
10   struct binary_function
11   {
12     typedef _Arg1     first_argument_type; 
13 
14     typedef _Arg2     second_argument_type;
15 
16     typedef _Result     result_type;
17   };

std::unary_function 与 std::binary_function ,定义了一元和二元函数的参数类型与返回值类型。

 1 template<typename _Res, typename... _ArgTypes>
 2   struct _Maybe_unary_or_binary_function { };
 3 
 4 template<typename _Res, typename _T1>
 5   struct _Maybe_unary_or_binary_function<_Res, _T1>
 6   : std::unary_function<_T1, _Res> { };
 7 
 8 template<typename _Res, typename _T1, typename _T2>
 9   struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
10   : std::binary_function<_T1, _T2, _Res> { };

_Maybe_unary_or_binary_function 类,当模板参数表示的函数为一元或二元时,分别继承 std::unary_function 与 std::binary_function 。

现在可以给出 std::function 类定义与方法声明:

  1 template<typename _Signature>
  2   class function;
  3 
  4 template<typename _Res, typename... _ArgTypes>
  5   class function<_Res(_ArgTypes...)>
  6   : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
  7     private _Function_base
  8   {
  9     typedef _Res _Signature_type(_ArgTypes...);
 10 
 11     template<typename _Functor>
 12       using _Invoke = decltype(__callable_functor(std::declval<_Functor&>())
 13                                (std::declval<_ArgTypes>()...) );
 14 
 15     template<typename _CallRes, typename _Res1>
 16       struct _CheckResult
 17       : is_convertible<_CallRes, _Res1> { };
 18 
 19     template<typename _CallRes>
 20       struct _CheckResult<_CallRes, void>
 21       : true_type { };
 22 
 23     template<typename _Functor>
 24       using _Callable = _CheckResult<_Invoke<_Functor>, _Res>;
 25 
 26     template<typename _Cond, typename _Tp>
 27       using _Requires = typename enable_if<_Cond::value, _Tp>::type;
 28 
 29   public:
 30     typedef _Res result_type;
 31 
 32     function() noexcept;
 33 
 34     function(nullptr_t) noexcept;
 35 
 36     function(const function& __x);
 37 
 38     function(function&& __x);
 39 
 40     // TODO: needs allocator_arg_t
 41 
 42     template<typename _Functor,
 43              typename = _Requires<_Callable<_Functor>, void>>
 44       function(_Functor);
 45 
 46     function&
 47     operator=(const function& __x);
 48 
 49     function&
 50     operator=(function&& __x);
 51 
 52     function&
 53     operator=(nullptr_t);
 54 
 55     template<typename _Functor>
 56       _Requires<_Callable<_Functor>, function&>
 57       operator=(_Functor&& __f);
 58 
 59     template<typename _Functor>
 60       function&
 61       operator=(reference_wrapper<_Functor> __f) noexcept;
 62     void swap(function& __x);
 63 
 64     // TODO: needs allocator_arg_t
 65     /*
 66     template<typename _Functor, typename _Alloc>
 67       void
 68       assign(_Functor&& __f, const _Alloc& __a);
 69     */
 70 
 71     explicit operator bool() const noexcept;
 72 
 73     _Res operator()(_ArgTypes... __args) const;
 74 
 75 #ifdef __GXX_RTTI
 76     const type_info& target_type() const noexcept;
 77 
 78     template<typename _Functor>       _Functor* target() noexcept;
 79 
 80     template<typename _Functor> const _Functor* target() const noexcept;
 81 #endif
 82 
 83   private:
 84     typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
 85     _Invoker_type _M_invoker;
 86 };
 87 
 88 template<typename _Res, typename... _Args>
 89   inline bool
 90   operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept;
 91 
 92 template<typename _Res, typename... _Args>
 93   inline bool
 94   operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept;
 95 
 96 template<typename _Res, typename... _Args>
 97   inline bool
 98   operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept;
 99 
100 template<typename _Res, typename... _Args>
101   inline bool
102   operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept;
103 
104 template<typename _Res, typename... _Args>
105   inline void
106   swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y);

前面说过,std::function 类的模板参数是一个函数类型。一个函数类型也是一个类型;std::function 只在模板参数是函数类型时才有意义;因此,有用的 std::function 是一个特化的模板,需要一个声明。标准库规定没有特化的声明是没有定义的。

std::function 继承自两个类:公有继承模板类 _Maybe_unary_or_binary_function ,私有继承非模板类 _Function_base 。

前者是公有继承,但实际上没有继承虚函数,不属于接口继承,而是实现继承,继承的是基类定义的类型别名。因为这些类型别名是面向客户的,所以必须公有继承。这个继承使 std::function 在不同数量的模板参数的实例化下定义不同的类型别名。继承是实现这种功能的唯一方法,SFINAE不行。(这是本文第一次出现SFINAE这个词,我默认你看得懂。这是泛型编程中的常用技巧,如果不会请参考这篇文章或Google。)

后者是私有继承,也属于实现继承,继承了基类的两个数据域与几个静态方法。

_Signature_type 是一个类型别名,就是模板参数,是一个函数类型。

_Invoke 是一个别名模板,就是仿函数被按参数类型调用的返回类型。如果不能调用,根据SFINAE,S错误不会E,但这个别名只有一个定义,在使用的地方所有S都E了,编译器还是会给E。

_CheckResult 是一个trait类,检测第一个模板参数能否转换为第二个。另有第二个参数为 void 的偏特化,在类型检测上使返回类型为 void 的 std::function 对象能支持任何返回值的函数对象。

_Callable 也是一个trait类,利用上面两个定义检测仿函数类型与 std::function 模板参数是否匹配。

_Requires 是一个有趣的别名模板,如果模板参数中第一个value trait为 true ,则定义为第二个模板参数,否则未定义(是没有,不是 void ),使用时将交给SFINAE处理。它大致上实现了C++20中 require 关键字的功能。实际上concept在2005年就有proposal了,一路从C++0x拖到C++20。我计划在C++20标准正式发布之前写一篇文章完整介绍concept。

result_type 是模板参数函数类型的返回值类型,与基类中定义的相同。

在类定义最后的私有段,还定义了一个函数指针类型以及该类型的一个对象,这是第二个函数指针。

其余的各种函数,在1.4节都介绍过了。

2.1.7 类型关系

讲了这么多类型,你记住它们之间的关系了吗?我们再来自顶向下地梳理一遍。

一个 std::function 对象中包含一个函数指针,它会被初始化为 _Function_handler 类中的静态函数的指针。std::function 与 _Function_handler 类之间,可以认为是组合关系。

std::function 继承自 _Maybe_unary_or_binary_function 与 _Function_base ,两者都是实现继承。

_Function_base 中有 _Base_manager 与 _Ref_manager 两个嵌套类型,其中后者还继承了前者,并覆写了几个方法。两个类定义了一系列静态方法,继承只是为了避免代码重复。

_Function_base 含有两个数据域,一个是函数指针,_Function_base 与两个嵌套类型之间既是嵌套又是组合;另一个是 _Any_data 类型对象,_Function_base 与 _Any_data 之间是组合关系。

而 _Any_data 是一个联合体,是两部分相同大小数据的联合,分别是 char 数组和 _Nocopy_types 类型对象,后者又是4种基本类型的联合。

其余的一些类与函数,都是起辅助作用的。至此,对 std::function 定义的分析就结束了。

 

2.2 方法的功能与实现

2.2.1 多态性的体现

之前一直讲,std::function 是一个多态的函数对象包装器,其中的难点就在于多态。什么是多态?你能看到这里,想必不是初学者,不知道多态是不可能的。Wikipedia对polymorphism的定义是:In programming languages and type theory, polymorphism is the provision of a single interface to entities of different types or the use of a single symbol to represent multiple different types.

可以说,我们要在 std::function 中处理好多态,就是要处理好类型。类型当然不能一个个枚举,但可以分类。这里可以分类的有两处:接口类型,即组成模板参数的类型,以及实现类型,即绑定的仿函数的类型。下面,我们就从这两个角度入手,分析 std::function 是如何实现的。

2.2.2 本地函数对象

先根据仿函数类型分类,可以在 std::function 对象内部存储的,无需heap空间的,在这一节讨论。相关的方法有以下3个:

 1 template<typename _Functor>
 2   static void
 3   _Function_base::_Base_manager<_Functor>::
 4   _M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
 5   { new (__functor._M_access()) _Functor(std::move(__f)); }
 6 
 7 template<typename _Functor>
 8   static void
 9   _Function_base::_Base_manager<_Functor>::
10   _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
11   {
12     new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
13   }
14 
15 template<typename _Functor>
16   static void
17   _Function_base::_Base_manager<_Functor>::
18   _M_destroy(_Any_data& __victim, true_type)
19   {
20     __victim._M_access<_Functor>().~_Functor();
21   }

_M_init_functor 用于初始化对象,在空白区域上用placement new 移动构造了函数对象。

_M_clone 用于复制对象,在目标的空白区域上用placement new 拷贝构造和函数对象。

_M_destroy 用于销毁对象,对函数对象显式调用了析构函数。

2.2.3 heap函数对象

然后来看函数对象存储在heap上的情况:

 1 template<typename _Functor>
 2   static void
 3   _Function_base::_Base_manager<_Functor>::
 4   _M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
 5   { __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
 6 
 7 template<typename _Functor>
 8   static void
 9   _Function_base::_Base_manager<_Functor>::
10   _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
11   {
12     __dest._M_access<_Functor*>() =
13       new _Functor(*__source._M_access<_Functor*>());
14   }
15 
16 template<typename _Functor>
17   static void
18   _Function_base::_Base_manager<_Functor>::
19   _M_destroy(_Any_data& __victim, false_type)
20   {
21     delete __victim._M_access<_Functor*>();
22   }

_M_access<_Functor*>() 将空白区域解释为仿函数的指针,并返回其引用,实现了这片区域的分时复用。前两个方法都比前一种情况多一层间接,而销毁方法则直接调用了 delete 。

2.2.4 两种存储结构如何统一

尽管我们不得不分类讨论,但为了方便使用,还需要一个统一的接口。不知你有没有注意到,上面每一个方法都有一个未命名的参数放在最后,在方法中也没有用到。前一种情况,这个参数都是 true_type 类型,而后一种都是 false_type 类型。这个技巧称为tag dispatching,在调用时根据类型特征确定这个位置的参数类型,从而通过重载决定调用哪一个。

 1 template<typename _Functor>
 2   static void
 3   _Function_base::_Base_manager<_Functor>::
 4   _M_init_functor(_Any_data& __functor, _Functor&& __f)
 5   { _M_init_functor(__functor, std::move(__f), _Local_storage()); }
 6 
 7 template<typename _Functor>
 8   static bool
 9   _Function_base::_Base_manager<_Functor>::
10   _M_manager(_Any_data& __dest, const _Any_data& __source,
11              _Manager_operation __op)
12   {
13     switch (__op)
14       {
15   #ifdef __GXX_RTTI
16       case __get_type_info:
17         __dest._M_access<const type_info*>() = &typeid(_Functor);
18         break;
19   #endif
20       case __get_functor_ptr:
21         __dest._M_access<_Functor*>() = _M_get_pointer(__source);
22         break;
23 
24       case __clone_functor:
25         _M_clone(__dest, __source, _Local_storage());
26         break;
27 
28       case __destroy_functor:
29         _M_destroy(__dest, _Local_storage());
30         break;
31       }
32     return false;
33   }

这个版本的 _M_init_functor() 只有两个参数,加上第三个参数委托给重载版本处理,这第三个参数是一个 _Local_storage 类的对象,它根据 __stored_locally 而成为 true_type 与 false_type ,从而区分开两个重载。

_M_manager() 方法,同样地,利用tag dispatching把另两组方法统一起来。它通过第三个枚举类型参数来确定需要的操作。

但是,这个方法的返回值是 bool ,怎么传出 type_info 与函数对象指针呢?它们将返回值写入第一个参数所指向的空间中。说起利用参数来传递返回值,我就想起C中的指针、C++中的引用、RVO、Java中的包裹类型、C#中的 out 关键字……这里的处理方法不仅解决了返回值的问题,同时也使各个操作的参数统一起来。

一个值得思考的问题是为什么不把 _M_init_functor() 也放到 _M_manager() 中去?答案是,调用 _M_init_functor() 的地方在 std::function 的模板构造或模板赋值函数中,此时是知道仿函数类型的;而其他操作被调用时,主调函数是不知道仿函数类型的,就必须用函数指针存储起来;为了节省空间,就引入一个枚举类 _Manager_operation ,把几种操作合并到一个函数中。

实际上这一层可以先不统一,就是写两种情况的 _M_manager ,然后到上一层再统一,但是会增加代码量。

除此以外,还有一种简单的方法将两者统一:

 1 template<typename _Functor>
 2   static _Functor*
 3   _Function_base::_Base_manager<_Functor>::
 4   _M_get_pointer(const _Any_data& __source)
 5   {
 6     const _Functor* __ptr =
 7       __stored_locally? std::__addressof(__source._M_access<_Functor>())
 8                       : __source._M_access<_Functor*>();
 9     return const_cast<_Functor*>(__ptr);
10   }

三目运算符的条件是一个静态常量,编译器会优化,不浪费程序空间,也不需要在运行时判断,效果与前一种方法相同。至于另外两个方法(指函数)为什么不用这种方法(指将两种情况统一的方法),可能是为了可读性吧。

2.2.5 根据形式区分仿函数类型

在下面一层解决了不同存储结构的问题后,我们还要考虑几种特殊情况。

_M_not_empty_function() 用于判断参数是否非空,而不同类型的判定方法是不同的。这里的解决方案很简单,模板方法重载即可。

 1 template<typename _Functor>
 2   template<typename _Signature>
 3     static bool
 4     _Function_base::_Base_manager<_Functor>::
 5     _M_not_empty_function(const function<_Signature>& __f)
 6     { return static_cast<bool>(__f); }
 7 
 8 template<typename _Functor>
 9   template<typename _Tp>
10     static bool
11     _Function_base::_Base_manager<_Functor>::
12     _M_not_empty_function(const _Tp*& __fp)
13     { return __fp; }
14 
15 template<typename _Functor>
16   template<typename _Class, typename _Tp>
17     static bool
18     _Function_base::_Base_manager<_Functor>::
19     _M_not_empty_function(_Tp _Class::* const& __mp)
20     { return __mp; }
21 
22 template<typename _Functor>
23   template<typename _Tp>
24     static bool
25     _Function_base::_Base_manager<_Functor>::
26     _M_not_empty_function(const _Tp&)
27     { return true; }

在调用时,普通函数对象、std::reference_wrapper 对象与成员指针的调用方法是不同的,也需要分类讨论。

1 template<typename _Res, typename _Functor, typename... _ArgTypes>
2   static _Res
3   _Function_handler<_Res(_ArgTypes...), _Functor>::
4   _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
5   {
6     return (*_Base::_M_get_pointer(__functor))(
7         std::forward<_ArgTypes>(__args)...);
8   }

对于普通函数对象,函数调用没什么特殊的。注意自定义 operator() 必须是 const 的。

对于 std::reference_wrapper 对象,由于包装的对象存储为指针,因此存储结构与普通函数对象有所不同,相应地调用也不同。

 1 template<typename _Functor>
 2   static void
 3   _Function_base::_Ref_manager<_Functor>::
 4   _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
 5   {
 6     _Base::_M_init_functor(__functor, std::__addressof(__f.get()));
 7   }
 8 
 9 template<typename _Functor>
10   static bool
11   _Function_base::_Ref_manager<_Functor>::
12   _M_manager(_Any_data& __dest, const _Any_data& __source,
13              _Manager_operation __op)
14   {
15     switch (__op)
16       {
17   #ifdef __GXX_RTTI
18       case __get_type_info:
19         __dest._M_access<const type_info*>() = &typeid(_Functor);
20         break;
21   #endif
22       case __get_functor_ptr:
23         __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
24         return is_const<_Functor>::value;
25         break;
26 
27       default:
28         _Base::_M_manager(__dest, __source, __op);
29       }
30     return false;
31   }
32 
33 template<typename _Res, typename _Functor, typename... _ArgTypes>
34   static _Res
35   _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >::
36   _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
37   {
38     return __callable_functor(**_Base::_M_get_pointer(__functor))(
39         std::forward<_ArgTypes>(__args)...);
40   }

碰到两个星号是不是有点晕?其实只要想,一般情况下存储函数对象的地方现在存储指针,所以要获得原始对象,只需要比一般情况多一次解引用,这样就容易理解了。

对于成员指针,情况又有一点不一样:

 1 template<typename _Class, typename _Member, typename... _ArgTypes>
 2   static bool
 3   _Function_handler<void(_ArgTypes...), _Member _Class::*>::
 4   _M_manager(_Any_data& __dest, const _Any_data& __source,
 5              _Manager_operation __op)
 6   {
 7     switch (__op)
 8       {
 9 #ifdef __GXX_RTTI
10       case __get_type_info:
11         __dest._M_access<const type_info*>() = &typeid(_Functor);
12         break;
13 #endif
14       case __get_functor_ptr:
15         __dest._M_access<_Functor*>() =
16           &_Base::_M_get_pointer(__source)->__value;
17         break;
18 
19       default:
20         _Base::_M_manager(__dest, __source, __op);
21       }
22     return false;
23   }
24 
25 template<typename _Class, typename _Member, typename _Res,
26          typename... _ArgTypes>
27   static _Res
28   _Function_handler<_Res(_ArgTypes...), _Member _Class::*>::
29   _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
30   {
31     return std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
32         std::forward<_ArgTypes>(__args)...);
33   }

我一直说“成员指针”,而不是“成员函数指针”,是因为数据成员指针也是可以绑定的,这种情况在 std::mem_fn() 中已经处理好了。

void 返回类型的偏特化本应接下来讨论,但之前讲过,这个函数被通过继承复用了。实际上,如果把这里的 void 改为模板类型,然后交换两个 _Function_handler 偏特化的继承关系,效果还是一样的,所以就在这里先讨论了。

最后一个需要区分的类型,是返回值类型,属于接口类型。之前都是非 void 版本,下面还有几个 void 的偏特化:

 1 template<typename _Functor, typename... _ArgTypes>
 2   static void
 3   _Function_handler<void(_ArgTypes...), _Functor>::
 4   _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
 5   {
 6     (*_Base::_M_get_pointer(__functor))(
 7         std::forward<_ArgTypes>(__args)...);
 8   }
 9 
10 template<typename _Functor, typename... _ArgTypes>
11   static void
12   _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >::
13   _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
14   {
15     __callable_functor(**_Base::_M_get_pointer(__functor))(
16         std::forward<_ArgTypes>(__args)...);
17   }
18 
19 template<typename _Class, typename _Member, typename... _ArgTypes>
20   static void
21   _Function_handler<void(_ArgTypes...), _Member _Class::*>::
22   _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
23   {
24     std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
25         std::forward<_ArgTypes>(__args)...);
26   }

void 只是删除了 return 关键字的非 void 版本,因此 void 返回类型的 std::function 对象可以绑定任何返回值的函数对象。

2.2.6 实现组装成接口

我们终于讨论完了各种情况,接下来让我们来见证 std::function 的大和谐:如何用这些方法组装成 std::function

  1 template<typename _Res, typename... _ArgTypes>
  2   function<_Res(_ArgTypes...)>::
  3   function() noexcept
  4   : _Function_base() { }
  5 
  6 template<typename _Res, typename... _ArgTypes>
  7   function<_Res(_ArgTypes...)>::
  8   function(nullptr_t) noexcept
  9   : _Function_base() { }
 10 
 11 template<typename _Res, typename... _ArgTypes>
 12   function<_Res(_ArgTypes...)>::
 13   function(function&& __x) : _Function_base()
 14   {
 15     __x.swap(*this);
 16   }
 17 
 18 template<typename _Res, typename... _ArgTypes>
 19   auto
 20   function<_Res(_ArgTypes...)>::
 21   operator=(const function& __x)
 22   -> function&
 23   {
 24     function(__x).swap(*this);
 25     return *this;
 26   }
 27 
 28 template<typename _Res, typename... _ArgTypes>
 29   auto
 30   function<_Res(_ArgTypes...)>::
 31   operator=(function&& __x)
 32   -> function&
 33   {
 34     function(std::move(__x)).swap(*this);
 35     return *this;
 36   }
 37 
 38 template<typename _Res, typename... _ArgTypes>
 39   auto
 40   function<_Res(_ArgTypes...)>::
 41   operator=(nullptr_t)
 42   -> function&
 43   {
 44     if (_M_manager)
 45       {
 46         _M_manager(_M_functor, _M_functor, __destroy_functor);
 47         _M_manager = 0;
 48         _M_invoker = 0;
 49       }
 50     return *this;
 51   }
 52 
 53 template<typename _Functor>
 54   auto
 55   function<_Res(_ArgTypes...)>::
 56   operator=(_Functor&& __f)
 57   -> _Requires<_Callable<_Functor>, function&>
 58   {
 59     function(std::forward<_Functor>(__f)).swap(*this);
 60     return *this;
 61   }
 62 
 63 template<typename _Res, typename... _ArgTypes>
 64   template<typename _Functor>
 65     auto
 66     function<_Res(_ArgTypes...)>::
 67     -> function&
 68     operator=(reference_wrapper<_Functor> __f) noexcept
 69     {
 70       function(__f).swap(*this);
 71       return *this;
 72     }
 73 
 74 template<typename _Res, typename... _ArgTypes>
 75   void
 76   function<_Res(_ArgTypes...)>::
 77   swap(function& __x)
 78   {
 79     std::swap(_M_functor, __x._M_functor);
 80     std::swap(_M_manager, __x._M_manager);
 81     std::swap(_M_invoker, __x._M_invoker);
 82   }
 83 
 84 template<typename _Res, typename... _ArgTypes>
 85   function<_Res(_ArgTypes...)>::
 86   operator bool() const noexcept
 87   { return !_M_empty(); }
 88 
 89 template<typename _Res, typename... _ArgTypes>
 90   function<_Res(_ArgTypes...)>::
 91   function(const function& __x)
 92   : _Function_base()
 93   {
 94     if (static_cast<bool>(__x))
 95       {
 96         _M_invoker = __x._M_invoker;
 97         _M_manager = __x._M_manager;
 98         __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
 99       }
100   }
101 
102 template<typename _Res, typename... _ArgTypes>
103   template<typename _Functor, typename>
104     function<_Res(_ArgTypes...)>::
105     function(_Functor __f)
106     : _Function_base()
107     {
108       typedef _Function_handler<_Signature_type, _Functor> _My_handler;
109 
110       if (_My_handler::_M_not_empty_function(__f))
111         {
112           _My_handler::_M_init_functor(_M_functor, std::move(__f));
113           _M_invoker = &_My_handler::_M_invoke;
114           _M_manager = &_My_handler::_M_manager;
115         }
116     }
117 
118 template<typename _Res, typename... _ArgTypes>
119   _Res
120   function<_Res(_ArgTypes...)>::
121   operator()(_ArgTypes... __args) const
122   {
123     if (_M_empty())
124       __throw_bad_function_call();
125     return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
126   }
127 
128 template<typename _Res, typename... _ArgTypes>
129   const type_info&
130   function<_Res(_ArgTypes...)>::
131   target_type() const noexcept
132   {
133     if (_M_manager)
134       {
135         _Any_data __typeinfo_result;
136         _M_manager(__typeinfo_result, _M_functor, __get_type_info);
137         return *__typeinfo_result._M_access<const type_info*>();
138       }
139     else
140       return typeid(void);
141   }
142 
143 template<typename _Res, typename... _ArgTypes>
144   template<typename _Functor>
145     _Functor*
146     function<_Res(_ArgTypes...)>::
147     target() noexcept
148     {
149       if (typeid(_Functor) == target_type() && _M_manager)
150         {
151           _Any_data __ptr;
152           if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
153               && !is_const<_Functor>::value)
154             return 0;
155           else
156             return __ptr._M_access<_Functor*>();
157         }
158       else
159         return 0;
160     }
161 
162 template<typename _Res, typename... _ArgTypes>
163   template<typename _Functor>
164     const _Functor*
165     function<_Res(_ArgTypes...)>::
166     target() const noexcept
167     {
168       if (typeid(_Functor) == target_type() && _M_manager)
169         {
170           _Any_data __ptr;
171           _M_manager(__ptr, _M_functor, __get_functor_ptr);
172           return __ptr._M_access<const _Functor*>();
173         }
174       else
175         return 0;
176     }
177 
178 template<typename _Res, typename... _Args>
179   inline bool
180   operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
181   { return !static_cast<bool>(__f); }
182 
183 template<typename _Res, typename... _Args>
184   inline bool
185   operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
186   { return !static_cast<bool>(__f); }
187 
188 template<typename _Res, typename... _Args>
189   inline bool
190   operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
191   { return static_cast<bool>(__f); }
192 
193 template<typename _Res, typename... _Args>
194   inline bool
195   operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
196   { return static_cast<bool>(__f); }
197 
198 template<typename _Res, typename... _Args>
199   inline void
200   swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y)
201   { __x.swap(__y); }

我们从 swap() 开始入手。swap() 方法只是简单地将三个数据成员交换了一下,这是正确的,因为它们存储的都是POD类型。我认为,这个实现对函数对象存储在本地的条件的限制太过严格,大小合适的可trivial复制的函数对象也应该可以存储在本地。

在 swap() 的基础上,拷贝构造、移动构造、拷贝赋值、移动赋值函数很自然地构建起来了,而且只用到了 swap() 方法。这种技巧称为copy-and-swap。这也就解释了为什么 std::function 需要那么多延迟调用的操作而表示操作的枚举类只需要定义4种操作。

swap() 还可以成为异常安全的基础。由于以上方法只涉及到 swap() ,而 swap() 方法是不抛异常的,因此两个移动函数是 noexcept 的,两个拷贝函数也能保证在栈空间足够时不抛异常,在抛异常时不会出现内存泄漏。

其余的方法,有了前面的基础,看代码就能读懂了。

 

后记

写这篇文章花了好久呀。这是我第一次写这么长的博客,希望你能有所收获。如果有不懂的地方,可以在评论区留言。如果有任何错误,烦请指正。

我是从实现的角度来写的这篇文章,如果你对其中的一些技巧(SFINAE、tag dispatching)不太熟悉的话,理解起来可能有点困难。相关资料[8]介绍了 function 类的设计思路,从无到有的构建过程比较容易理解。相关资料[9]分析了另一个版本的 std::function 实现,可供参考。

文章内容已经很充实了,但是没有图片,不太直观。有空我会加上图片的,这样更容易理解。

另外,在我实现完自己的 function 类以后,还会对这篇文章作一点补充。自己造一遍轮子,总会有更深刻的感受吧。

 

附录

相关资料:

[1] Naive std::function implementation

[2] How is std::function implemented?

[3] std::function - cppreference.com

[4] The space of design choices for std::function

[5] How true is “Want Speed? Pass by value”

[6] C++奇淫巧技之SFINAE

[7] What is the copy-and-swap idiom?

[8] std::function 基本实现

[9] std::function 源码分析

 

posted on 2019-07-29 12:02  Jerry_SJTU  阅读(18739)  评论(3编辑  收藏  举报