ConvTranspose2d
CLASStorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
Parameters
-
in_channels (int) – Number of channels in the input image
-
out_channels (int) – Number of channels produced by the convolution
-
stride (int or tuple, optional) – Stride of the convolution. Default: 1
-
padding (int or tuple, optional) – zero-padding will be added to both sides of each dimension in the input. Default: 0
dilation * (kernel_size - 1) - padding -
output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0
-
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
-
bias (bool, optional) – If , adds a learnable bias to the output. Default:
TrueTrue -
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
shape:
input:(N,Cin,Hin,Win) or (Cin,Hin,Win)
output:(N,Cout,Hout,Wout) or (Cout,Hout,Wout)
转置卷积运算步骤:
1、在输入特征图元素间填充s-1行、列0
2、在输入特征图四周填充k-p-1行、列0
3、将卷积核参数上下、左右翻转
4、做正常卷积运算(填充0,步距1)
Hout = (Hin−1) × stride[0] − 2 × padding[0] + dilation[0] × (kernel_size[0] − 1) + output_padding[0] + 1
Wout = (Win−1) × stride[1] − 2 × padding[1] + dilation[1] × (kernel_size[1] − 1) + output_padding[1] + 1


浙公网安备 33010602011771号