基于MATLAB的内容图像检索实现

一、系统架构设计

基于内容的图像检索(CBIR)系统包含四大核心模块:

  1. 图像预处理:归一化、去噪、特征标准化
  2. 特征提取:颜色/纹理/形状/深度特征
  3. 相似性度量:欧氏距离/余弦相似度/巴氏距离
  4. 检索排序:K近邻搜索+结果可视化

二、关键实现步骤(含代码)

1. 数据预处理
%% 图像加载与归一化
dataPath = 'dataset/';
imds = imageDatastore(dataPath, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');

% 图像尺寸统一化
inputSize = [128,128];
augmentedImds = augmentedImageDatastore(inputSize, imds);

%% 颜色空间转换
img = readimage(imds, 1);
rgbImg = im2double(img);
hsvImg = rgb2hsv(rgbImg); % 转换到HSV空间
2. 特征提取
2.1 颜色特征(HSV直方图)
% 计算HSV直方图
hsvHist = imhist(hsvImg(:,:,1)); % 色调通道
hsvHist = hsvHist / sum(hsvHist); % 归一化

% 多通道联合直方图
[height, width, ~] = size(rgbImg);
hist3d = zeros(8,8,8);
for i=1:height
    for j=1:width
        hsv = rgb2hsv(img(i,j,:));
        bin = floor(hsv * 8);
        hist3d(bin(1), bin(2), bin(3)) = hist3d(bin(1), bin(2), bin(3)) + 1;
    end
end
hist3d = hist3d / sum(hist3d(:)); % 三维直方图归一化
2.2 纹理特征(LBP)
% 提取LBP特征
lbpImg = extractLBPFeatures(rgbImg, 'Upright', true, 'NumNeighbors', 8);
lbpFeatures = double(lbpImg.Features);

% GLCM纹理分析
glcm = graycomatrix(rgb2gray(img), 'Offset', [0 1; -1 1; -1 0; -1 -1]);
stats = graycoprops(glcm, {'Contrast','Correlation','Energy','Homogeneity'});
textureFeatures = [stats.Contrast, stats.Correlation, stats.Energy, stats.Homogeneity];
2.3 深度特征(AlexNet)
% 加载预训练模型
net = alexnet;
layers = net.Layers;

% 提取特征层输出
featureLayer = 'fc7';
augmentedImds.ReadFcn = @(filename)imresize(imread(filename), inputSize(1:2));
[features, ~] = activations(net, augmentedImds, featureLayer, 'OutputAs', 'rows');
3. 相似性计算
%% 特征数据库构建
featureDB = zeros(size(imds.Files));
for i=1:numel(imds.Files)
    img = readimage(imds, i);
    hsv = rgb2hsv(img);
    hist3d = compute3DHistogram(hsv); % 自定义三维直方图函数
    featureDB(i,:) = [hist3d(:); textureFeatures]; % 特征向量拼接
end

%% 相似度计算(余弦相似度)
queryFeature = features(1,:); % 假设查询第一张图
similarity = 1 - pdist2(queryFeature, featureDB, 'cosine');
[~, sortedIdx] = sort(similarity, 'descend');
4. 结果可视化
%% 多模态结果展示
figure;
subplot(2,5,1); imshow(readimage(imds,1)); title('查询图像');
for i=2:6
    subplot(2,5,i);
    imshow(readimage(imds, sortedIdx(i)));
    title(sprintf('相似度: %.2f', similarity(sortedIdx(i))));
end

三、性能优化策略

  1. 特征降维

    % PCA降维
    [coeff, score, ~] = pca(featureDB);
    reducedFeatures = score(:,1:50); % 保留前50个主成分
    
  2. 并行计算加速

    % 启用并行池
    parpool('local');
    
    % 并行特征提取
    parfor i=1:numel(imds.Files)
        featureDB(i,:) = extractFeatures(imds.Files{i});
    end
    
  3. 近似最近邻搜索

    % 使用KD-Tree加速
    kdtree = KDTreeSearcher(featureDB);
    idx = knnsearch(kdtree, queryFeature, 'K', 10);
    

四、典型应用场景

  1. 医学影像检索

    % 肿瘤区域检索
    tumorFeatures = extractLBPFeatures(tumorImage);
    [~, idx] = knnsearch(featureDB, tumorFeatures, 'K', 5);
    
  2. 工业质检系统

    % 缺陷模式匹配
    defectImg = imread('defect.jpg');
    defectFeat = extractHOGFeatures(defectImg);
    [matches, scores] = matchFeatures(queryFeat, dbFeatures);
    
  3. 电商商品推荐

    % 商品主图检索
    productImg = imread('product.jpg');
    productFeat = alexnet_features(productImg);
    idx = knnsearch(featureDB, productFeat, 'K', 10);
    

五、完整代码框架

%% 主程序:图像检索系统
clear; clc;

% 1. 数据库初始化
imds = imageDatastore('dataset/', 'IncludeSubfolders', true);
featureDB = buildFeatureDatabase(imds); % 自定义特征提取函数

% 2. 查询处理
queryImg = imread('query.jpg');
queryFeat = extractFeatures(queryImg); % 特征提取

% 3. 相似度计算
similarity = computeSimilarity(queryFeat, featureDB); % 自定义相似度函数

% 4. 结果展示
showResults(imds, similarity);

参考代码 基于内容的图像检索 www.youwenfan.com/contentcni/64028.html

六、参数调优

参数类型 推荐范围 优化方法
直方图分箱数 8-16 网格搜索+交叉验证
特征维度 50-200 PCA降维
K值(近邻数) 5-15 轮廓系数评估
学习率 0.001-0.01 Adam优化器自动调整

七、扩展改进方向

  1. 多模态检索

    % 图像+文本联合检索
    textFeatures = bertEncode(caption);
    fusedFeatures = concatenate(imageFeatures, textFeatures);
    
  2. 增量学习机制

    % 在线更新特征库
    newFeatures = extractFeatures(newImages);
    featureDB = [featureDB; newFeatures];
    
  3. 对抗攻击防御

    % 添加对抗训练
    adversarialData = generateAdversarialExamples(imds);
    augmentedImds = [augmentedImds; adversarialData];
    

八、工程实践建议

  1. 数据增强

    % 增强数据多样性
    aug = imageDataAugmenter('RandRotation', [-10,10], 'RandXReflection', true);
    augmentedImds = augmentedImageDatastore(inputSize, imds, 'DataAugmentation', aug);
    
  2. 模型微调

    % 迁移学习微调
    net = alexnet;
    layers(1) = convolution2dLayer([5,5], 64, 'Padding', 'same'); % 修改首层
    net = trainNetwork(trainingData, layers);
    
  3. 可视化分析

    % t-SNE特征可视化
    tsnePlot = tsne(featureDB);
    gscatter(tsnePlot(:,1), tsnePlot(:,2), imds.Labels);
    
posted @ 2025-10-09 11:32  kang_ms  阅读(8)  评论(0)    收藏  举报