from mxnet import ndarray as nd
from mxnet import gluon
from mxnet import autograd
from mxnet.gluon import nn
def transform(data, label):
return nd.transpose(data.astype(np.float32), (2,0,1))/255, label.astype(np.float32)
mnist_train = gluon.data.vision.FashionMNIST(train=True, transform=transform)
mnist_test = gluon.data.vision.FashionMNIST(train=False, transform=transform)
batch_size = 256
train_data = gluon.data.DataLoader(mnist_train, batch_size, shuffle=True)
test_data = gluon.data.DataLoader(mnist_test, batch_size, shuffle=False)
import mxnet as mx
try:
ctx = mx.gpu()
_ = nd.zeros((1,), ctx = ctx)
except:
ctx = mx.cpu()
ctx
def accuracy(output, label):
return nd.mean(output.argmax(axis=1)==label).asscalar()
def evaluate_accuracy(data_iterator, net):
acc = 0.
for data, label in data_iterator:
output = net(data)
acc += accuracy(output, label)
return acc / len(data_iterator)
net = nn.Sequential()
with net.name_scope():
net.add(
nn.Conv2D(channels=20, kernel_size=5, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=50, kernel_size=3, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Flatten(),
nn.Dense(128, activation="relu"),
nn.Dense(10))
net.initialize(ctx=ctx)
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.2})
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
for epoch in range(5):
train_loss = 0.
train_acc = 0.
for data, label in train_data:
label = label.as_in_context(ctx)
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(batch_size)
train_loss += nd.mean(loss).asscalar()
train_acc += accuracy(output, label)
test_acc = evaluate_accuracy(test_data, net)
print("Epoch %d. Loss: %f, Train acc %f, Test acc %f" % (epoch, train_loss/len(train_data),train_acc/len(train_data), test_acc))