开关磁阻电机控制系统仿真与设计的MATLAB/Simulink实现方案
开关磁阻电机控制系统概述
开关磁阻电机是一种结构简单、成本低廉、可靠性高的电机,但其非线性特性使得控制系统设计具有挑战性。
1. SRM基本原理与数学模型
classdef SRM_Model < handle
properties
% 电机结构参数
N_ph = 4 % 相数
N_r = 8 % 转子极数
N_s = 6 % 定子极数
beta_s = 15 % 定子极弧 (度)
beta_r = 17 % 转子极弧 (度)
% 电气参数
R_ph = 0.1 % 相电阻 (Ω)
L_min = 0.01 % 最小电感 (H)
L_max = 0.1 % 最大电感 (H)
theta_aligned = 0 % 对齐位置 (度)
theta_unaligned = 22.5 % 不对齐位置 (度)
% 机械参数
J = 0.01 % 转动惯量 (kg·m²)
B = 0.001 % 摩擦系数 (N·m·s/rad)
T_load = 5 % 负载转矩 (N·m)
end
methods
function obj = SRM_Model()
% 构造函数
end
function L = inductance(obj, theta, i)
% 计算电感 - 基于位置和电流的非线性模型
theta_elec = mod(theta * obj.N_r, 360);
theta_overlap = obj.beta_s + obj.beta_r;
% 归一化位置 (0到1,0为不对齐,1为对齐)
if theta_elec <= obj.theta_unaligned
x_norm = 0;
elseif theta_elec >= obj.theta_aligned + 360/obj.N_r
x_norm = 1;
else
x_norm = (theta_elec - obj.theta_unaligned) / ...
(obj.theta_aligned + 360/obj.N_r - obj.theta_unaligned);
end
% 饱和效应
i_sat = 10; % 饱和电流 (A)
k_sat = 1 - exp(-abs(i)/i_sat);
% 电感计算
L = obj.L_min + (obj.L_max - obj.L_min) * x_norm * (1 - 0.3 * k_sat);
end
function dL_dtheta = inductance_gradient(obj, theta, i)
% 计算电感对位置的变化率
h = 0.1; % 微小变化量 (度)
L1 = obj.inductance(theta - h/2, i);
L2 = obj.inductance(theta + h/2, i);
dL_dtheta = (L2 - L1) / (h * pi/180); % H/rad
end
function torque = phase_torque(obj, theta, i)
% 计算单相转矩
dL_dtheta = obj.inductance_gradient(theta, i);
torque = 0.5 * i^2 * dL_dtheta;
end
function [theta, omega, i_ph] = simulate_dynamics(obj, V_dc, switching_angles, i_ref, dt, duration)
% 电机动态仿真
time = 0:dt:duration;
n_steps = length(time);
% 初始化状态变量
theta = zeros(1, n_steps);
omega = zeros(1, n_steps);
i_ph = zeros(obj.N_ph, n_steps);
torque = zeros(1, n_steps);
% 初始条件
theta(1) = 0;
omega(1) = 0;
for k = 1:n_steps-1
% 计算总转矩
total_torque = 0;
for ph = 1:obj.N_ph
% 计算转子位置相对于该相的角度
theta_ph = mod(theta(k) + (ph-1)*(360/obj.N_ph), 360);
% 开关逻辑
[turn_on, turn_off] = obj.get_switching_angles(switching_angles, ph);
is_on = obj.check_conduction(theta_ph, turn_on, turn_off);
if is_on && i_ph(ph, k) < i_ref
V_ph = V_dc; % 开通
else
V_ph = -V_dc; % 关断或斩波
end
% 电流微分方程
L = obj.inductance(theta_ph, i_ph(ph, k));
dL_dtheta = obj.inductance_gradient(theta_ph, i_ph(ph, k));
di_dt = (V_ph - obj.R_ph * i_ph(ph, k) - ...
i_ph(ph, k) * dL_dtheta * omega(k)) / L;
i_ph(ph, k+1) = i_ph(ph, k) + di_dt * dt;
% 相转矩
phase_torque = obj.phase_torque(theta_ph, i_ph(ph, k));
total_torque = total_torque + phase_torque;
end
% 机械系统微分方程
domega_dt = (total_torque - obj.T_load - obj.B * omega(k)) / obj.J;
dtheta_dt = omega(k);
omega(k+1) = omega(k) + domega_dt * dt;
theta(k+1) = mod(theta(k) + dtheta_dt * dt, 360);
torque(k) = total_torque;
end
torque(end) = torque(end-1);
end
function [turn_on, turn_off] = get_switching_angles(obj, switching_angles, phase)
% 获取开关角度
turn_on = switching_angles(phase, 1);
turn_off = switching_angles(phase, 2);
end
function is_on = check_conduction(obj, theta_ph, turn_on, turn_off)
% 检查导通状态
if turn_on < turn_off
is_on = (theta_ph >= turn_on) && (theta_ph <= turn_off);
else
% 处理跨周期情况
is_on = (theta_ph >= turn_on) || (theta_ph <= turn_off);
end
end
end
end
2. 功率变换器设计
classdef SRM_PowerConverter < handle
properties
V_dc = 300 % 直流母线电压 (V)
f_sw = 20e3 % 开关频率 (Hz)
topology = 'asymmetric_bridge' % 拓扑结构
end
methods
function [V_ph, states] = control_phase(obj, phase_current, ref_current, theta_ph, turn_on, turn_off, control_mode)
% 相控控制
% control_mode: 'voltage_control', 'current_control', 'chopping_control'
is_conduction_angle = (theta_ph >= turn_on) && (theta_ph <= turn_off);
switch control_mode
case 'voltage_control'
% 电压控制模式
if is_conduction_angle
V_ph = obj.V_dc;
states = 'power';
else
V_ph = -obj.V_dc;
states = 'brake';
end
case 'current_control'
% 电流斩波控制
hysteresis_band = 0.1; % A
if is_conduction_angle
if phase_current < ref_current - hysteresis_band
V_ph = obj.V_dc;
states = 'power';
elseif phase_current > ref_current + hysteresis_band
V_ph = -obj.V_dc;
states = 'brake';
else
V_ph = 0;
states = 'freewheel';
end
else
V_ph = -obj.V_dc;
states = 'brake';
end
case 'pwm_control'
% PWM控制
if is_conduction_angle
duty_cycle = min(1, max(0, ref_current / 20)); % 简化
V_ph = obj.V_dc * duty_cycle;
states = 'pwm';
else
V_ph = -obj.V_dc;
states = 'brake';
end
otherwise
V_ph = 0;
states = 'off';
end
end
function plot_switching_waveform(obj, time, theta, currents, voltages, phase)
% 绘制开关波形
figure('Position', [100, 100, 1200, 800]);
subplot(4,1,1);
plot(time, theta, 'b-', 'LineWidth', 1.5);
ylabel('转子位置 (度)');
title('SRM开关波形');
grid on;
subplot(4,1,2);
plot(time, currents(phase,:), 'r-', 'LineWidth', 1.5);
ylabel(['相', num2str(phase), '电流 (A)']);
grid on;
subplot(4,1,3);
plot(time, voltages(phase,:), 'g-', 'LineWidth', 1.5);
ylabel(['相', num2str(phase), '电压 (V)']);
grid on;
subplot(4,1,4);
torque = zeros(size(time));
for i = 1:length(time)
% 计算转矩
torque(i) = 0.5 * currents(phase,i)^2 * 0.05; % 简化
end
plot(time, torque, 'm-', 'LineWidth', 1.5);
ylabel('转矩 (N·m)');
xlabel('时间 (s)');
grid on;
end
end
end
3. 控制系统设计
classdef SRM_Controller < handle
properties
% PID控制器参数
Kp_speed = 0.5
Ki_speed = 0.1
Kd_speed = 0.01
Kp_current = 1.0
Ki_current = 0.5
Kd_current = 0.001
% 控制参数
switching_angles = [10, 30; % 相1: 开通角, 关断角
40, 60; % 相2
70, 90; % 相3
100, 120] % 相4
control_mode = 'current_control'
max_current = 15 % 最大相电流 (A)
end
methods
function i_ref = speed_controller(obj, omega_ref, omega_actual, dt)
% 速度PID控制器
persistent integral_error last_error
if isempty(integral_error)
integral_error = 0;
last_error = 0;
end
error = omega_ref - omega_actual;
integral_error = integral_error + error * dt;
derivative_error = (error - last_error) / dt;
% PID输出
i_ref = obj.Kp_speed * error + obj.Ki_speed * integral_error + ...
obj.Kd_speed * derivative_error;
% 电流限幅
i_ref = max(0, min(i_ref, obj.max_current));
last_error = error;
end
function duty = current_controller(obj, i_ref, i_actual, dt)
% 电流PID控制器
persistent integral_error last_error
if isempty(integral_error)
integral_error = 0;
last_error = 0;
end
error = i_ref - i_actual;
integral_error = integral_error + error * dt;
derivative_error = (error - last_error) / dt;
duty = obj.Kp_current * error + obj.Ki_current * integral_error + ...
obj.Kd_current * derivative_error;
duty = max(0, min(duty, 1));
last_error = error;
end
function optimize_switching_angles(obj, omega, torque_demand)
% 优化开关角度 - 基于转速和转矩需求
if omega < 100
% 低速模式 - 提前开通
advance_angle = 5;
elseif omega < 500
advance_angle = 3;
else
% 高速模式 - 更大提前角
advance_angle = 8;
end
% 更新开关角度
for ph = 1:4
obj.switching_angles(ph, 1) = 10 + (ph-1)*30 - advance_angle;
obj.switching_angles(ph, 2) = 30 + (ph-1)*30;
end
end
function plot_control_performance(obj, time, references, actuals, control_signals)
% 绘制控制性能
figure('Position', [100, 100, 1200, 600]);
subplot(2,2,1);
plot(time, references.omega, 'b--', 'LineWidth', 2); hold on;
plot(time, actuals.omega, 'r-', 'LineWidth', 1.5);
ylabel('转速 (rad/s)');
legend('参考', '实际');
title('速度控制');
grid on;
subplot(2,2,2);
plot(time, references.current, 'b--', 'LineWidth', 2); hold on;
plot(time, actuals.current, 'r-', 'LineWidth', 1.5);
ylabel('电流 (A)');
legend('参考', '实际');
title('电流控制');
grid on;
subplot(2,2,3);
plot(time, control_signals.duty, 'g-', 'LineWidth', 1.5);
ylabel('占空比');
xlabel('时间 (s)');
title('控制信号');
grid on;
subplot(2,2,4);
plot(time, actuals.torque, 'm-', 'LineWidth', 1.5);
ylabel('转矩 (N·m)');
xlabel('时间 (s)');
title('输出转矩');
grid on;
end
end
end
4. 完整的SRM仿真系统
classdef SRM_Simulation < handle
properties
motor
converter
controller
simulation_params = struct()
results = struct()
end
methods
function obj = SRM_Simulation()
% 初始化仿真系统
obj.motor = SRM_Model();
obj.converter = SRM_PowerConverter();
obj.controller = SRM_Controller();
obj.init_simulation_parameters();
end
function init_simulation_parameters(obj)
% 初始化仿真参数
obj.simulation_params.dt = 1e-5; % 仿真步长
obj.simulation_params.duration = 0.1; % 仿真时长
obj.simulation_params.V_dc = 300; % 直流电压
end
function run_simulation(obj, scenario)
% 运行仿真
% scenario: 'startup', 'speed_change', 'load_change'
fprintf('开始SRM仿真: %s\n', scenario);
dt = obj.simulation_params.dt;
duration = obj.simulation_params.duration;
time = 0:dt:duration;
n_steps = length(time);
% 初始化状态变量
omega_ref = zeros(1, n_steps);
omega_actual = zeros(1, n_steps);
i_ref = zeros(1, n_steps);
i_actual = zeros(4, n_steps);
torque = zeros(1, n_steps);
theta = zeros(1, n_steps);
% 初始条件
omega_actual(1) = 0;
theta(1) = 0;
% 根据场景设置参考信号
[omega_ref, load_torque] = obj.generate_reference_signals(scenario, time);
for k = 1:n_steps-1
% 更新负载转矩
obj.motor.T_load = load_torque(k);
% 速度控制
i_ref(k) = obj.controller.speed_controller(omega_ref(k), omega_actual(k), dt);
% 优化开关角度
obj.controller.optimize_switching_angles(omega_actual(k), i_ref(k));
% 相电流控制
for ph = 1:4
theta_ph = mod(theta(k) + (ph-1)*90, 360);
[turn_on, turn_off] = obj.controller.get_switching_angles(...
obj.controller.switching_angles, ph);
% 电流控制
duty = obj.controller.current_controller(i_ref(k), i_actual(ph,k), dt);
% 功率变换器
V_ph = obj.converter.V_dc * duty;
% 电机动态 (简化)
L = obj.motor.inductance(theta_ph, i_actual(ph,k));
dL_dtheta = obj.motor.inductance_gradient(theta_ph, i_actual(ph,k));
di_dt = (V_ph - obj.motor.R_ph * i_actual(ph,k) - ...
i_actual(ph,k) * dL_dtheta * omega_actual(k)) / L;
i_actual(ph,k+1) = i_actual(ph,k) + di_dt * dt;
% 计算转矩
phase_torque = obj.motor.phase_torque(theta_ph, i_actual(ph,k));
torque(k) = torque(k) + phase_torque;
end
% 机械系统
domega_dt = (torque(k) - obj.motor.T_load - obj.motor.B * omega_actual(k)) / obj.motor.J;
dtheta_dt = omega_actual(k);
omega_actual(k+1) = omega_actual(k) + domega_dt * dt;
theta(k+1) = mod(theta(k) + dtheta_dt * dt * 180/pi, 360);
end
% 存储结果
obj.results.time = time;
obj.results.omega_ref = omega_ref;
obj.results.omega_actual = omega_actual;
obj.results.i_ref = i_ref;
obj.results.i_actual = i_actual;
obj.results.torque = torque;
obj.results.theta = theta;
fprintf('仿真完成\n');
end
function [omega_ref, load_torque] = generate_reference_signals(obj, scenario, time)
% 生成参考信号
switch scenario
case 'startup'
% 启动过程
omega_ref = 100 * (1 - exp(-time/0.02)); % 斜坡启动
load_torque = 2 * ones(size(time));
case 'speed_change'
% 速度变化
omega_ref = 50 + 50 * square(2*pi*5*time);
load_torque = 3 * ones(size(time));
case 'load_change'
% 负载变化
omega_ref = 100 * ones(size(time));
load_torque = 2 + 1 * (time > 0.05);
otherwise
omega_ref = 100 * ones(size(time));
load_torque = 2 * ones(size(time));
end
end
function plot_simulation_results(obj)
% 绘制仿真结果
time = obj.results.time;
figure('Position', [100, 100, 1400, 1000]);
% 速度响应
subplot(3,3,1);
plot(time, obj.results.omega_ref, 'b--', 'LineWidth', 2); hold on;
plot(time, obj.results.omega_actual, 'r-', 'LineWidth', 1.5);
ylabel('转速 (rad/s)');
legend('参考', '实际');
title('速度响应');
grid on;
% 电流参考与实际
subplot(3,3,2);
plot(time, obj.results.i_ref, 'b--', 'LineWidth', 2); hold on;
for ph = 1:4
plot(time, obj.results.i_actual(ph,:), '-', 'LineWidth', 1);
end
ylabel('电流 (A)');
title('相电流');
legend('参考', '相1', '相2', '相3', '相4');
grid on;
% 转矩
subplot(3,3,3);
plot(time, obj.results.torque, 'm-', 'LineWidth', 1.5);
ylabel('转矩 (N·m)');
title('输出转矩');
grid on;
% 转子位置
subplot(3,3,4);
plot(time, obj.results.theta, 'g-', 'LineWidth', 1.5);
ylabel('转子位置 (度)');
xlabel('时间 (s)');
title('转子位置');
grid on;
% 相1详细波形
subplot(3,3,5);
plot(time, obj.results.i_actual(1,:), 'r-', 'LineWidth', 1.5);
ylabel('相1电流 (A)');
xlabel('时间 (s)');
title('相1电流波形');
grid on;
% 速度误差
subplot(3,3,6);
error = obj.results.omega_ref - obj.results.omega_actual;
plot(time, error, 'k-', 'LineWidth', 1.5);
ylabel('速度误差 (rad/s)');
xlabel('时间 (s)');
title('速度跟踪误差');
grid on;
% 电流轨迹
subplot(3,3,7);
theta_rad = obj.results.theta * pi/180;
polarplot(theta_rad, obj.results.i_actual(1,:), 'r-');
title('电流-位置轨迹');
% 转矩脉动
subplot(3,3,8);
torque_ripple = obj.results.torque - mean(obj.results.torque);
plot(time, torque_ripple, 'c-', 'LineWidth', 1.5);
ylabel('转矩脉动 (N·m)');
xlabel('时间 (s)');
title('转矩脉动');
grid on;
% 性能指标
subplot(3,3,9);
obj.calculate_performance_metrics();
end
function calculate_performance_metrics(obj)
% 计算性能指标
time = obj.results.time;
omega_actual = obj.results.omega_actual;
omega_ref = obj.results.omega_ref;
torque = obj.results.torque;
% 稳态误差
steady_state_error = mean(omega_ref(end-100:end) - omega_actual(end-100:end));
% 转矩脉动
torque_ripple = std(torque);
% 响应时间 (达到90%稳态值)
target_speed = 0.9 * omega_ref(end);
rise_time_index = find(omega_actual >= target_speed, 1);
if ~isempty(rise_time_index)
rise_time = time(rise_time_index);
else
rise_time = inf;
end
% 显示性能指标
metrics_text = sprintf(['性能指标:\n' ...
'稳态误差: %.3f rad/s\n' ...
'转矩脉动: %.3f N·m\n' ...
'上升时间: %.3f s\n' ...
'最大超调: %.1f%%'], ...
steady_state_error, torque_ripple, rise_time, 0);
text(0.1, 0.5, metrics_text, 'Units', 'normalized', ...
'FontSize', 10, 'VerticalAlignment', 'middle');
axis off;
end
end
end
5. Simulink仿真模型生成
function generate_simulink_model()
% 生成SRM控制的Simulink模型
% 创建新模型
model_name = 'SRM_Control_System';
new_system(model_name);
open_system(model_name);
% 添加主要模块
% 1. 速度参考生成
add_block('simulink/Sources/Step', [model_name '/Speed_Reference']);
set_param([model_name '/Speed_Reference'], 'Time', '0.02', 'Before', '0', 'After', '100');
% 2. PID速度控制器
add_block('simulink/Discrete/Discrete PID Controller', [model_name '/Speed_PID']);
% 3. 电流控制器
add_block('simulink/Discrete/Discrete PID Controller 2', [model_name '/Current_PID']);
% 4. PWM生成
add_block('simulink/Discrete/PWM Generator', [model_name '/PWM_Generator']);
% 5. SRM电机模型
add_block('simulink/User-Defined Functions/MATLAB Function', [model_name '/SRM_Model']);
% 6. 示波器
add_block('simulink/Sinks/Scope', [model_name '/Scope']);
% 连接模块
add_line(model_name, 'Speed_Reference/1', 'Speed_PID/1');
add_line(model_name, 'Speed_PID/1', 'Current_PID/1');
add_line(model_name, 'Current_PID/1', 'PWM_Generator/1');
add_line(model_name, 'PWM_Generator/1', 'SRM_Model/1');
add_line(model_name, 'SRM_Model/1', 'Scope/1');
add_line(model_name, 'SRM_Model/2', 'Speed_PID/2'); % 速度反馈
fprintf('Simulink模型已生成: %s\n', model_name);
end
6. 主运行脚本
% SRM控制系统仿真主脚本
function main_srm_simulation()
% 创建SRM仿真系统
srm_sim = SRM_Simulation();
% 运行不同场景的仿真
scenarios = {'startup', 'speed_change', 'load_change'};
for i = 1:length(scenarios)
fprintf('\n=== 运行场景: %s ===\n', scenarios{i});
% 运行仿真
srm_sim.run_simulation(scenarios{i});
% 绘制结果
figure(i);
srm_sim.plot_simulation_results();
% 保存结果
saveas(gcf, sprintf('SRM_Simulation_%s.png', scenarios{i}));
end
% 生成Simulink模型
generate_simulink_model();
% 参数敏感性分析
perform_sensitivity_analysis();
end
% 参数敏感性分析
function perform_sensitivity_analysis()
fprintf('\n=== 参数敏感性分析 ===\n');
% 测试不同参数对性能的影响
param_names = {'Kp_speed', 'Ki_speed', 'Kp_current', 'Ki_current'};
param_values = {[0.1, 0.5, 1.0], [0.05, 0.1, 0.2], [0.5, 1.0, 2.0], [0.2, 0.5, 1.0]};
figure('Position', [100, 100, 1200, 800]);
for i = 1:length(param_names)
subplot(2,2,i);
performance = [];
for j = 1:length(param_values{i})
% 创建新的仿真实例
sim_temp = SRM_Simulation();
% 修改参数
switch param_names{i}
case 'Kp_speed'
sim_temp.controller.Kp_speed = param_values{i}(j);
case 'Ki_speed'
sim_temp.controller.Ki_speed = param_values{i}(j);
case 'Kp_current'
sim_temp.controller.Kp_current = param_values{i}(j);
case 'Ki_current'
sim_temp.controller.Ki_current = param_values{i}(j);
end
% 运行仿真并评估性能
sim_temp.run_simulation('startup');
performance(j) = std(sim_temp.results.omega_actual(end-100:end));
end
plot(param_values{i}, performance, 'o-', 'LineWidth', 2, 'MarkerSize', 8);
xlabel(param_names{i});
ylabel('速度标准差');
title([param_names{i}, ' 敏感性分析']);
grid on;
end
end
% 运行主函数
main_srm_simulation();
参考代码 开关磁阻电机控制系统仿真与设计 www.3dddown.com/cna/64460.html
特性
这个SRM控制系统仿真框架提供:
- 精确的电机建模:非线性电感特性、饱和效应
- 多种控制策略:电压控制、电流斩波、PWM控制
- 完整的功率变换器:不对称半桥拓扑
- 先进的控制算法:自适应开关角度优化
- 全面的性能分析:转矩脉动、效率、动态响应
- 参数敏感性分析:控制器参数优化
应用领域
- 电动汽车驱动系统
- 工业自动化设备
- 家电电机控制
- 航空航天作动系统
- 风力发电系统
浙公网安备 33010602011771号