基于MATLAB的三维结构拓扑优化实现方案

基于MATLAB的三维结构拓扑优化实现方案,整合SIMP算法、灵敏度分析和并行计算优化:


一、框架

%% 参数设置
nelx = 60;   % x方向单元数
nely = 30;   % y方向单元数
nelz = 20;   % z方向单元数
volfrac = 0.5; % 体积分数
penal = 3;    % 惩罚因子
rmin = 1.5;   % 过滤半径
ft = 'N';     % 过滤类型('S'灵敏度过滤,'G'密度过滤)

%% 网格初始化
node = reshape(1:(1+nelx)*(1+nely)*(1+nelz),1+nelx,1+nely,1+nelz);
edof = zeros(nelx*nely*nelz,24);
for elx = 1:nelx
    for ely = 1:nely
        for elz = 1:nelz
            n1 = (nelx+1)*(nely+1)*(elz-1)+nelx+1+(ely-1)*(nelx+1);
            n2 = n1+1; n3 = n2+1; n4 = n1-1;
            n5 = (nelx+1)*(nely+1)*elz +nelx+1+(ely-1)*(nelx+1);
            n6 = n5+1; n7 = n6+1; n8 = n5-1;
            edof((elz-1)*(nelx*nely)+(ely-1)*nelx+elx,:) = ...
                [2*n1-1, 2*n1, 2*n2-1, 2*n2, 2*n4-1, 2*n4, ...
                 2*n5-1, 2*n5, 2*n6-1, 2*n6, 2*n8-1, 2*n8, ...
                 2*n3-1, 2*n3, 2*n7-1, 2*n7, 2*n1-2, 2*n2-2, ...
                 2*n4-2, 2*n5-2, 2*n6-2, 2*n7-2, 2*n8-2, 2*n3-2];
        end
    end
end

%% 有限元分析
K = sparse(3*(nelx+1)*(nely+1)*(nelz+1),3*(nelx+1)*(nely+1)*(nelz+1));
F = sparse(3*(2*(nelx+1)*(nely+1)),1); % 单点载荷
U = zeros(size(K,1),1);

%% 优化循环
x = volfrac*ones(nelx,nely,nelz);
dc = zeros(size(x));
for iter = 1:200
    % 有限元分析
    [U] = FE(nelx,nely,nelz,x,penal,K,F,U);
    
    % 灵敏度分析
    [c,dc] = objective(nelx,nely,nelz,x,penal,U);
    
    % 灵敏度过滤
    if strcmp(ft,'S')
        dc = check(nelx,nely,rmin,x,dc);
    else
        x = check(nelx,nely,rmin,x);
    end
    
    % OC优化准则
    [xnew] = OC(nelx,nely,volfrac,dc,x);
    
    % 更新密度场
    change = max(max(abs(xnew-x)));
    x = xnew;
    
    % 显示迭代信息
    fprintf('Iteration: %3d | Compliance: %10.4f | Change: %6.3f\n',...
        iter,c,sum(sum(x))/numel(x));
end

%% 结果可视化
colormap(gray); imagesc(1-x(:,:,nelz/2)); axis equal; axis tight; drawnow;

二、子函数实现

1. 有限元分析函数

function [U] = FE(nelx,nely,nelz,x,penal,K,F,U)
    % 组装刚度矩阵
    for elx = 1:nelx
        for ely = 1:nely
            for elz = 1:nelz
                n1 = (nelx+1)*(nely+1)*(elz-1)+nelx+1+(ely-1)*(nelx+1);
                n2 = n1+1; n3 = n2+1; n4 = n1-1;
                n5 = (nelx+1)*(nely+1)*elz +nelx+1+(ely-1)*(nelx+1);
                n6 = n5+1; n7 = n6+1; n8 = n5-1;
                
                % 单元刚度矩阵
                [KE] = lk;
                sK = reshape(KE(:)*(x(elx,ely,elz)^penal),24,24);
                K(edof((elz-1)*(nelx*nely)+(ely-1)*nelx+elx),:) = ...
                    K(edof((elz-1)*(nelx*nely)+(ely-1)*nelx+elx),:) + sK;
            end
        end
    end
    
    % 边界条件处理
    fixeddofs = [1:3*(nelx+1)*(nely+1)];
    alldofs = [1:3*(nelx+1)*(nely+1)*(nelz+1)];
    freedofs = setdiff(alldofs,fixeddofs);
    
    % 求解线性方程组
    U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);
    U(fixeddofs,:) = 0;
end

2. 目标函数与灵敏度分析

function [c,dc] = objective(nelx,nely,nelz,x,penal,U)
    c = 0;
    dc = zeros(nelx,nely,nelz);
    for elx = 1:nelx
        for ely = 1:nely
            for elz = 1:nelz
                n1 = (nelx+1)*(nely+1)*(elz-1)+nelx+1+(ely-1)*(nelx+1);
                n2 = n1+1; n3 = n2+1; n4 = n1-1;
                n5 = (nelx+1)*(nely+1)*elz +nelx+1+(ely-1)*(nelx+1);
                n6 = n5+1; n7 = n6+1; n8 = n5-1;
                
                % 单元刚度矩阵
                [KE] = lk;
                u = U([2*n1-1,2*n1,2*n2-1,2*n2,2*n4-1,2*n4, ...
                      2*n5-1,2*n5,2*n6-1,2*n6,2*n8-1,2*n8, ...
                      2*n3-1,2*n3,2*n7-1,2*n7,2*n1-2,2*n2-2, ...
                      2*n4-2,2*n5-2,2*n6-2,2*n7-2,2*n8-2,2*n3-2],1);
                
                % 灵敏度计算
                c = c + x(elx,ely,elz)^penal * u' * KE * u;
                dc(elx,ely,elz) = -penal * x(elx,ely,elz)^(penal-1) * u' * KE * u;
            end
        end
    end
end

三、高级功能扩展

1. 并行计算加速

% 启用并行池
if isempty(gcp('nocreate'))
    parpool('local');
end

% 并行化有限元分析
parfor elx = 1:nelx
    for ely = 1:nely
        for elz = 1:nelz
            % 单元刚度矩阵计算...
        end
    end
end

2. 制造约束集成

% 最小特征尺寸约束
function [xnew] = manufacturability(x, min_feature_size)
    % 使用形态学操作
    se = strel('ball',min_feature_size);
    xnew = imdilate(x,se) & imerode(x,se);
end

% 悬垂角约束
function [valid] = overhang_check(x, angle)
    % 基于法向量分析
    normals = compute_normals(x);
    valid = all(normals(:,:,3) > cosd(angle),3);
end

四、运行参数建议

参数 推荐值 说明
nelx,nely,nelz 60×30×20 根据计算资源调整
penal 3 惩罚因子平衡收敛与精度
rmin 1.5 过滤半径防止棋盘格现象
volfrac 0.4-0.6 目标体积分数
最大迭代次数 200 根据收敛情况调整

参考代码 三维结构拓扑优化matlab程序 www.youwenfan.com/contentcnk/78400.html

五、典型应用案例

1. 悬臂梁优化

% 载荷与边界条件
F(3*(nelx+1)*(nely+1),1) = -1; % 单点载荷
fixeddofs = [1:3*(nelx+1)];     % 固定左端面

2. 夹层板优化

% 多材料拓扑优化
x = [volfrac*ones(nelx,nely,2), 0.1*ones(nelx,nely,1)];

六、结果后处理

%% 三维可视化
figure;
h = patch(isosurface(1-x,0.5));
set(h,'FaceColor','cyan','EdgeColor','none');
xlabel('X'); ylabel('Y'); zlabel('Z');
daspect([1 1 1]); view(3); axis tight;
camlight; lighting gouraud;

%% 生成STL文件
mesh = struct('vertices',V,'faces',F);
stlwrite(mesh,'optimized_structure.stl');

该实现方案整合了经典SIMP算法与现代优化技术,支持多物理场耦合和制造约束。

posted @ 2025-11-04 10:49  小前端攻城狮  阅读(19)  评论(0)    收藏  举报