AT_abc302_d [ABC302D] Impartial Gift
容易发现我们可以先对两个序列排序。
依次枚举 ,那么另一个数应该 应该满足 。因此我们可以二分在这个区间的最大值 ,那么这个贡献就是 ,最后将所有 取最大值即可。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <set>
#include <map>
#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <utility>
#include <cstdlib>
#include <string>
using namespace std;
#define ll long long
const int N = 2e5 + 5, INF = 2e9, MOD = 1e9 + 7;
inline int read()
{
int op = 1, x = 0;
char ch = getchar();
while ((ch < '0' || ch > '9') && ch != '-') ch = getchar();
while (ch == '-')
{
op = -op;
ch = getchar();
}
while (ch >= '0' and ch <= '9')
{
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
return x * op;
}
inline void write(int x)
{
if (x < 0) putchar('-'), x = -x;
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
int n, m, t;
long long a[N], b[N], k;
long long ans = -1;
#define mabs(x) ((x) < 0 ? (-(x)) : (x))
int main()
{
// freopen("*.in", "r", stdin);
// freopen("*.out", "w", stdout);
scanf("%d%d%lld", &n, &m, &k);
for (int i = 1; i <= n; i++) scanf("%lld", &a[i]);
for (int i = 1; i <= m; i++) scanf("%lld", &b[i]);
sort(a + 1, a + n + 1);
sort(b + 1, b + m + 1);
for (int i = 1; i <= n; i++)
{
if (mabs(b[m] - a[i]) <= k)
{
ans = max(ans, b[m] + a[i]);
continue;
}
int x = upper_bound(b + 1, b + m + 1, a[i] + k) - b;
for (int j = max(1, x - 10); j <= min(m, x + 10); j++)
{
if (mabs(b[j] - a[i]) <= k)
{
ans = max(ans, b[j] + a[i]);
}
}
}
printf("%lld\n", ans);
return 0;
}

浙公网安备 33010602011771号