P2402 奶牛隐藏 题解
首先可以发现可以二分答案。接着考虑如何 check。
假设二分当前距离最大值为 ,显然对于点对 ,当 时, 的所有奶牛可以到 点避雨。可以最短路预处理 。然而题目限制仍然难以下手。
考虑二分图模型,每个点分成两个点,一个是这个点的奶牛,即 ,另一个是牛棚,即 。
源点 向每个奶牛点 连边,容量为 。每个牛棚点向汇点 连边,容量为 。这保证了每个奶牛点最多只出去 ,每个牛棚最多只承受 。
对于上文提到的点对 ,我们从 的奶牛点连一条边向 的牛棚点,容量为 。这意味着每个奶牛点可以去某个牛棚的牛数不限。不过由于我们已经限定了 的容量,所以是正确的。
跑一遍最大流,当流量为 时,表示存在方案使得所有牛到棚子且满足题目要求。否则不存在。
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 2e5 + 5, M = 205;
int dis[M][M], sums = 0;
vector<pair<int, int> > G[N];
int e[N], h[N], c[N], ne[N], idx;
int s[N], p[N], n, m, d[N], cur[N];
bool vis[N];
int S = 0, T;
struct Node
{
int u, d;
Node(int _u, int _d): u(_u), d(_d){}
bool operator<(const Node& g) const
{
return d > g.d;
}
};
int dijkstra(int s)
{
for (int i = 1; i <= n; i++) vis[i] = 0;
dis[s][s] = 0;
priority_queue<Node> q;
q.push(Node(s, 0));
while (q.size())
{
int u = q.top().u;
q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (auto j : G[u])
{
if (dis[s][j.first] > dis[s][u] + j.second)
{
dis[s][j.first] = dis[s][u] + j.second;
q.push(Node(j.first, dis[s][j.first]));
}
}
}
}
inline void add(int u, int v, int w)
{
e[idx] = v, c[idx] = w, ne[idx] = h[u], h[u] = idx++;
}
inline void adde(int u, int v, int w)
{
add(u, v, w);
add(v, u, 0);
}
inline bool bfs()
{
queue<int> q;
for (int i = 0; i <= T; i++)
{
d[i] = -1, cur[i] = 0;
}
d[S] = 0, cur[S] = h[S];
q.push(S);
while (q.size())
{
int u = q.front();
q.pop();
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (c[i] > 0 && d[j] == -1)
{
d[j] = d[u] + 1;
cur[j] = h[j];
if (j == T) return 1;
q.push(j);
}
}
}
return 0;
}
inline int dfs(int u, int lim)
{
if (u == T) return lim;
int sum = 0;
for (int i = cur[u]; ~i && sum < lim; i = ne[i])
{
cur[u] = i;
int j = e[i];
if (d[j] == d[u] + 1 && c[i] > 0)
{
int p = dfs(j, min(c[i], lim - sum));
if (!p) d[j] = -1;
sum += p;
c[i] -= p;
c[i ^ 1] += p;
}
}
return sum;
}
int dinic()
{
int res = 0;
while (bfs())
{
int p;
while (p = dfs(S, (int)9e18)) res += p;
}
return res;
}
inline bool check(int x)
{
T = 2 * n + 1;
for (int i = 0; i <= 605; i++)
{
h[i] = -1;
}
idx = 0;
for (int i = 1; i <= n; i++)
{
adde(S, i, s[i]);
for (int j = 1; j <= n; j++)
{
if (dis[i][j] <= x)
{
adde(i, j + n, (int)9e18);
}
}
adde(i + n, T, p[i]);
}
return dinic() == sums;
}
signed main()
{
ios::sync_with_stdio(0), cin.tie(nullptr), cout.tie(nullptr);
cin >> n >> m;
for (int i = 1; i <= n; i++) cin >> s[i] >> p[i], sums += s[i];
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
dis[i][j] = 9e18;
}
}
for (int i = 1; i <= m; i++)
{
int u, v, w;
cin >> u >> v >> w;
G[u].emplace_back(make_pair(v, w));
G[v].emplace_back(make_pair(u, w));
}
for (int i = 1; i <= n; i++) dijkstra(i);
int l = 0, r = (int)2e18, res = -1;
while (l <= r)
{
int mid = l + ((r - l) >> 1);
if (check(mid))
{
res = mid;
r = mid - 1;
}
else l = mid + 1;
}
cout << res << "\n";
return 0;
}

浙公网安备 33010602011771号