洛谷题单指南-图论之树-P3178 [HAOI2015] 树上操作
原题链接:https://www.luogu.com.cn/problem/P3178
题意解读:对树上节点进行操作:1、单点修改,权值增加一个数 2、子树修改,子树所有节点权值增加一个数 3、路径权值和查询
解题思路:就是一个典型的树链剖分+线段树的应用,直接上代码。
100分代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 100005;
struct TreeNode
{
int v, w;
};
vector<TreeNode> g[N]; //邻接表
struct SegmentTree
{
int l, r;
LL sum, tag;
} tr[N << 2]; //线段树
int a[N]; //节点初始权值
int son[N], top[N], siz[N], depth[N], fa[N], dfn[N], rk[N], idx; //树链剖分相关
int n, m;
void dfs1(int u, int p, int d)
{
siz[u] = 1;
depth[u] = d;
fa[u] = p;
for(auto item : g[u])
{
int v = item.v;
if(v == p) continue;
dfs1(v, u, d + 1);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int t)
{
top[u] = t;
dfn[u] = ++idx;
rk[idx] = u;
if(son[u]) dfs2(son[u], t);
for(auto item : g[u])
{
int v = item.v;
if(v != son[u] && v != fa[u]) dfs2(v, v);
}
}
void pushup(int u)
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void addtag(int u, LL add)
{
tr[u].tag += add;
tr[u].sum += add * (tr[u].r - tr[u].l + 1);
}
void pushdown(int u)
{
if(tr[u].tag)
{
addtag(u << 1, tr[u].tag);
addtag(u << 1 | 1, tr[u].tag);
tr[u].tag = 0;
}
}
void build(int u, int l, int r)
{
tr[u] = {l, r};
if(l == r)
{
tr[u].sum = a[rk[l]];
return;
}
int mid = l + r >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
pushup(u);
}
void update(int u, int x, LL add)
{
if(tr[u].l == tr[u].r)
{
addtag(u, add);
return;
}
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if(x <= mid) update(u << 1, x, add);
else update(u << 1 | 1, x, add);
pushup(u);
}
void updateRange(int u, int l, int r, LL add)
{
if(l <= tr[u].l && tr[u].r <= r)
{
addtag(u, add);
return;
}
else if(tr[u].l > r || tr[u].r < l) return;
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if(l <= mid) updateRange(u << 1, l, r, add);
if(r > mid) updateRange(u << 1 | 1, l, r, add);
pushup(u);
}
LL query(int u, int l, int r)
{
if(l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
else if(tr[u].l > r || tr[u].r < l) return 0;
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
LL sum = 0;
if(l <= mid) sum += query(u << 1, l, r);
if(r > mid) sum += query(u << 1 | 1, l, r);
return sum;
}
void updateSubTree(int x, int add)
{
updateRange(1, dfn[x], dfn[x] + siz[x] - 1, add);
}
LL queryPath(int x, int y)
{
LL res = 0;
while(top[x] != top[y])
{
if(depth[top[x]] < depth[top[y]]) swap(x, y);
res += query(1, dfn[top[x]], dfn[x]);
x = fa[top[x]];
}
if(depth[x] > depth[y]) swap(x, y);
res += query(1, dfn[x], dfn[y]);
return res;
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++) cin >> a[i];
for(int i = 1; i < n; i++)
{
int u, v;
cin >> u >> v;
g[u].push_back({v, 0});
g[v].push_back({u, 0});
}
dfs1(1, 0, 1);
dfs2(1, 1);
build(1, 1, n);
int op, x, y;
while(m--)
{
cin >> op;
if(op == 1)
{
cin >> x >> y;
update(1, dfn[x], y);
}
else if(op == 2)
{
cin >> x >> y;
updateSubTree(x, y);
}
else
{
cin >> x;
cout << queryPath(1, x) << endl;
}
}
return 0;
}
浙公网安备 33010602011771号