可弯曲软管的动态生成
最近在做一个化学VR实验室项目,其中要求用一个橡胶软管连接两个导管,两个导管可以任意移动旋转,而连接它们的橡胶软管需要跟随做弯曲和拉伸
美术给了一个直的软管模型
如何实现软管的弯曲和拉伸呢,想起了仰慕已久的Mega-Fiers插件
研究使用了半天,Mega-Fiers插件确实能弯曲和拉伸软管模型,但是
1.Mega-Fiers插件只对模型顶点做位置变化,不会增加和删除模型顶点,所以在对软管局部做角度偏大的弯曲时,会有明显的折痕(这个软管模型有2k+的顶点,增加模型横向顶点数折痕会有缓解)
2.Mega-Fiers插件很难对同一模型用多个形变组件组合出想要的效果,我试了很久没试出怎么组合出软管两头弯曲加中段拉伸的效果,更不要说在程序运行时动态组合效果了
3.Mega-Fiers插件无法满足一些精确的控制要求,比如无法让弯曲后的软管口和导管口无缝衔接
对静态模型做形变不能达到要求,于是想是否能运行时动态生成软管模型,研究了一下,发现确实可行,设计思路如下
1.如下图,以A点为一个导管口端点,DirA方向为导管延伸方向,在DirA方向上取一个合适的距离A-CA,B点为另一个导管口端点取同样的距离B-CB,以CA->CB方向取同样的距离CA-EA,以CB->CA为方向取同样距离CB-EB,CAB为CA-CB中心点
2.以A和EA点为一段贝塞尔曲线的顶点,CA为其控制点,获取到一串贝塞尔曲线点,同样以B和EB点为顶点,CB为控制点获取一串点,以EA,EB为顶点,CAB为控制点获取一串点
3.在以当前曲线点到下一个曲线点的方向为法线,穿过当前曲线点的平面上,以当前曲线点为圆心获取一圈圆的顶点
4.以获取到的所有圆的顶点为软管的模型顶点,再设置三角面和法线信息,最终生成软管模型的网格
中间一段是直线,可以只生成三个曲线点就可以
using UnityEngine; using System.Collections.Generic; public struct BezierLineSegment { public Vector3 fromPoint; public Vector3 toPoint; public Vector3 controlPoint; public Quaternion fromDir; public Quaternion toDir; public void CalculateDir() { fromDir = Quaternion.FromToRotation(Vector3.forward, controlPoint - fromPoint); toDir = Quaternion.FromToRotation(Vector3.forward, toPoint - controlPoint); } public bool IsStraight() { return fromDir == toDir; } } [ExecuteInEditMode] public class BezierPipe : MonoBehaviour { public float cornerScale = 1f; [Range(1,100)] public int cornerStep = 10; [Range(2,100)] public int circleStep = 10; public float r = 0.1f; public Transform point1; public Vector3 point1Dir = Vector3.up; public Transform point2; public Vector3 point2Dir = Vector3.up; public bool update = false; public Mesh mesh; List<Vector3> verts = new List<Vector3>(); List<int> triangles = new List<int>(); private MeshCollider mc; // Use this for initialization void Start () { mesh = new Mesh(); mesh.name = "Pipe"; MeshFilter mf = GetComponent<MeshFilter>(); if (mf != null) { mf.sharedMesh = mesh; } mc = GetComponent<MeshCollider>(); if (mc != null) { mc.sharedMesh = mesh; } BuildMesh(); } // Update is called once per frame void Update() { if (update) { BuildMesh(); } } void GetCirclePoint(Vector3 pos, Quaternion dir,bool draw) { for (int a = 0; a <= circleStep; a++) { float p = 2 * Mathf.PI * a / circleStep; Vector3 cp = new Vector3(r * Mathf.Cos(p), r * Mathf.Sin(p), 0); cp = dir* cp + pos; //if(draw) // Gizmos.DrawSphere(cp, 0.0005f); cp = transform.worldToLocalMatrix.MultiplyPoint(cp); //cp += transform.position; verts.Add(cp); } } void SetTriangles() { triangles.Clear(); for (int i = 0; i < verts.Count - circleStep - 2; i ++) { triangles.Add(i); triangles.Add(i+1); triangles.Add(i+circleStep + 1); triangles.Add(i+circleStep + 1); triangles.Add(i+1); triangles.Add(i+circleStep + 2); } mesh.triangles = triangles.ToArray(); } public void BuildMesh() { if (point1 != null && point2 != null) { verts.Clear(); float scale = cornerScale; float length = (point1.position - point2.position).magnitude/4; if (scale > length) { scale = length; } BezierLineSegment[] segments = new BezierLineSegment[3]; segments[0].fromPoint = point1.position; point1Dir.Normalize(); segments[0].controlPoint = point1.position + point1.rotation * point1Dir * scale; segments[2].toPoint = point2.position; point2Dir.Normalize(); segments[2].controlPoint = point2.position + point2.rotation * point2Dir * scale; segments[1].controlPoint = (segments[0].controlPoint + segments[2].controlPoint) / 2; segments[0].toPoint = segments[1].fromPoint = segments[0].controlPoint + (segments[1].controlPoint - segments[0].controlPoint).normalized * scale; segments[1].toPoint = segments[2].fromPoint = segments[2].controlPoint + (segments[1].controlPoint - segments[2].controlPoint).normalized * scale; transform.position = segments[1].controlPoint; segments[1].CalculateDir(); transform.rotation = segments[1].fromDir; // Debug.Log (transform.eulerAngles); foreach (var segment in segments) { segment.CalculateDir(); if (segment.IsStraight()) { GetCirclePoint(segment.fromPoint, segment.fromDir,true); GetCirclePoint(segment.controlPoint, segment.fromDir,false); GetCirclePoint(segment.toPoint, segment.toDir, true); //Gizmos.DrawLine(segment.fromPoint, segment.controlPoint); //Gizmos.DrawLine(segment.controlPoint, segment.toPoint); } else { GetCirclePoint(segment.fromPoint, segment.fromDir, true); Vector3 p1 = segment.fromPoint; for (int s = 1; s < cornerStep; s++) { float t = (float) s/cornerStep; Vector3 p2 = Bezier.GetPoint(segment.fromPoint, segment.controlPoint, segment.toPoint, t); //Quaternion dir = Quaternion.FromToRotation(Vector3.forward, p2 - p1); Quaternion dir = Quaternion.Lerp(segment.fromDir, segment.toDir, t); GetCirclePoint(p2,dir,false); //Gizmos.DrawLine(p1, p2); p1 = p2; } GetCirclePoint(segment.toPoint, segment.toDir, true); //Gizmos.DrawLine(p1,segment.toPoint); } } mesh.Clear(); mesh.vertices = verts.ToArray(); SetTriangles(); mesh.RecalculateNormals(); if (mc != null) { mc.sharedMesh = mesh; } } } }
CornerScale即A-CA,CA-EA,B-CB,CB-EB的长度,越长软管曲线部分越长,直线部分越短,运行时CornerScale将不大于两个端点间距离的四分之一
CornerStep即A-EA间贝塞尔曲线要取的曲线点数,越高软管弯曲部分越顺滑
CircleStep即绕曲线点圆的顶点数,越高软管横截面越圆
R即绕曲线点圆的半径,即软管的粗度
两个Point即两个导管的头,两个Dir即两个导管头在未旋转时的延伸方向