为什么实数有这么好的性质?

实数中蕴藏的数学结构

The set of real numbers has several standard structures:

  • An order: each number is either less than or greater than any other number.
  • Algebraic structure: there are operations of addition and multiplication, the first of which makes it into a group and the pair of which together make it into a field.
  • A measure: intervals of the real line have a specific length, which can be extended to the Lebesgue measure on many of its subsets.
  • A metric: there is a notion of distance between points.
  • A geometry: it is equipped with a metric and is flat.
  • A topology: there is a notion of open sets.

There are interfaces among these:

  • Its order and, independently, its metric structure induce its topology.
  • Its order and algebraic structure make it into an ordered field.
  • Its algebraic structure and topology make it into a Lie group, a type of topological group.

实数集具有几个标准结构:

  1. 顺序:每个数字要么小于任何其他数字,要么大于任何其他数字。
  2. 代数结构:有加法和乘法运算,其中加法使其成为一个群,而两者一起使其成为一个域。
  3. 测度:实数线段具有特定的长度,这可以扩展到其许多子集上的勒贝格测度。
  4. 度量:有点之间的距离概念。
  5. 几何:它配备了度量并且是平坦的。
  6. 拓扑学:有开集的概念。

它们之间存在接口:

  • 它的顺序和独立的度量结构导致了它的拓扑结构。
  • 它的顺序和代数结构使其成为一个有序域。
  • 它的代数结构和拓扑学使其成为李群,这是一种拓扑群。

之后,随着代数拓扑学、微分拓扑学、代数几何学、李群和代数群理论、多复变量函数论、泛函分析等领域趋于平稳,而难以结构化的数学分支,如分析数学、概率论与统计学、离散数学(组合数学)、应用数学、计算数学等开始蓬勃发展,布尔巴基学派逐渐衰微。(p.s.感觉后面这些数学都大都更适于计算机处理,计算机的普及促进了新数学领域的发展。)

不必全部了解这些结构也能做数学(应用数学),因为学习数学不是学习reality,而是模型,脑子里面的模型去解释真实!
如果实数已经拥有这么些好的性质,能够很好地描述现实,that's enough!

Reference

  1. Wikipedia Mathematical Structure
posted @ 2024-03-06 23:07  光辉233  阅读(44)  评论(0)    收藏  举报