ipynb中juypter中安装uv虚拟环境

安装 uv 虚拟环境管理

# 如果已经装过可跳过
!curl -LsSf https://astral.sh/uv/install.sh | sh

image

 

 

 把 uv写入环境变量

import os, sys
# 把 uv 所在目录写进 PATH
os.environ["PATH"] = f"/home/zmrobo/.local/bin:{os.environ['PATH']}"

 

 

 版本 查询  

import os
os.environ["PATH"] = f"/home/zmrobo/.local/bin:{os.environ['PATH']}"
!uv --version

image

 

 

 uv 安装 pip ,注册内核

 

# 1. 用 uv 直接装 pip + ipykernel
!uv pip install --python .venv/bin/python pip ipykernel

# 2. 注册内核
! .venv/bin/python -m ipykernel install --user --name=uv-env --display-name "Python (uv-env)"

 

Resolved 30 packages in 2.27s                                        
Prepared 1 package in 9.36s                                              
Installed 30 packages in 343ms                              
 + asttokens==3.0.0
 + comm==0.2.3
 + debugpy==1.8.17
 + decorator==5.2.1
 + executing==2.2.1
 + ipykernel==7.0.1
 + ipython==9.6.0
 + ipython-pygments-lexers==1.1.1
 + jedi==0.19.2
 + jupyter-client==8.6.3
 + jupyter-core==5.8.1
 + matplotlib-inline==0.1.7
 + nest-asyncio==1.6.0
 + packaging==25.0
 + parso==0.8.5
 + pexpect==4.9.0
 + pip==25.2
 + platformdirs==4.5.0
 + prompt-toolkit==3.0.52
 + psutil==7.1.0
 + ptyprocess==0.7.0
 + pure-eval==0.2.3
 + pygments==2.19.2
 + python-dateutil==2.9.0.post0
 + pyzmq==27.1.0
 + six==1.17.0
 + stack-data==0.6.3
 + tornado==6.5.2
 + traitlets==5.14.3
 + wcwidth==0.2.14
Installed kernelspec uv-env in /home/zmrobo/.local/share/jupyter/kernels/uv-env

  

image

 

 

 虚拟环境安装   numpy 包

 

! .venv/bin/python -m pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple

 

image

 

 

 版本查询

 

import sys, numpy
print(sys.executable)   # 应该指向 .../工作目录/.venv/bin/python
print(numpy.__version__)

 

image

 

 

 删除 虚拟环境

 

!rm -rf /home/zmrobo/Project/test/.venv

 

 

 新建虚拟环境

 

!uv venv /home/zmrobo/Project/test/.venv

image

 

 
   
   

 查看灵芯派环境信息

 

# 1.1 系统 & 硬件
!uname -a                    # OS / 内核
!lscpu | head -10            # CPU 型号 & 核数
!free -h                     # 内存
!df -h | grep '/'            # 磁盘剩余
!nvidia-smi 2>/dev/null || echo "No GPU"   # GPU 型号 / 显存

# 1.2 预装软件版本
!python --version
!python3 --version
!pip --version
!git --version
!which gcc && gcc --version  # 编译器

# 1.3 网络连通性(可选)
!ping -c 2 gitee.com

信息

Linux H2-RCU 4.19.232 #145 SMP Tue Sep 30 16:37:20 CST 2025 aarch64 GNU/Linux
Architecture:        aarch64
Byte Order:          Little Endian
CPU(s):              4
On-line CPU(s) list: 0-3
Thread(s) per core:  1
Core(s) per socket:  4
Socket(s):           1
Vendor ID:           ARM
Model:               0
Model name:          Cortex-A55
              total        used        free      shared  buff/cache   available
Mem:          1.9Gi       445Mi       197Mi       101Mi       1.3Gi       1.4Gi
Swap:            0B          0B          0B
/dev/root        14G   13G  1.1G   92% /
devtmpfs        977M  8.0K  977M    1% /dev
tmpfs           986M  1.5M  984M    1% /dev/shm
tmpfs           986M   96M  891M   10% /run
tmpfs           5.0M  4.0K  5.0M    1% /run/lock
tmpfs           986M     0  986M    0% /sys/fs/cgroup
tmpfs           986M  8.0K  986M    1% /tmp
/dev/mmcblk0p7  123M   13M  104M   11% /oem
/dev/mmcblk0p8  362M   23K  362M    1% /userdata
tmpfs           198M  8.0K  198M    1% /run/user/1000
tmpfs           198M     0  198M    0% /run/user/0
No GPU
Python 2.7.16
Python 3.7.3
pip 24.0 from /usr/local/lib/python3.7/dist-packages/pip (python 3.7)
git version 2.20.1
/usr/bin/gcc
gcc (Debian 8.3.0-6) 8.3.0
Copyright (C) 2018 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

ping: socket: 不允许的操作

  

 

 安装 torch 

! .venv/bin/python -m pip install torch  -i https://pypi.tuna.tsinghua.edu.cn/simple

image

 

 

 安装场景的 AI 库

!uv pip install --python .venv/bin/python \
    transformers accelerate sentencepiece modelscope -i https://mirrors.aliyun.com/pypi/simple/

image

 

Resolved 29 packages in 5.01s                                        
Prepared 16 packages in 34.31s                                           
Installed 16 packages in 467ms                              
 + accelerate==1.10.1
 + certifi==2025.10.5
 + charset-normalizer==3.4.4
 + hf-xet==1.1.10
 + huggingface-hub==0.35.3
 + idna==3.11
 + modelscope==1.30.0
 + pyyaml==6.0.3
 + regex==2025.9.18
 + requests==2.32.5
 + safetensors==0.6.2
 + sentencepiece==0.2.1
 + tokenizers==0.22.1
 + tqdm==4.67.1
 + transformers==4.57.1
 + urllib3==2.5.0

  

 

 查看 ai 库环境

import sys, os, platform, subprocess, importlib.metadata, psutil, torch
 
print("=" * 60)
print("🔍 Python 运行环境")
print("=" * 60)
print("Python:", sys.version)
print("Platform:", platform.platform())
print("PWD:", os.getcwd())
print("=" * 60)
 
# 2.1 关键库版本
libs = ["torch", "transformers", "accelerate", "sentencepiece", "modelscope"]
for lib in libs:
    try:
        ver = pkg_resources.get_distribution(lib).version
        print(f"{lib:<15} {ver}")
    except:
        print(f"{lib:<15} ❌ 未安装")
 
# 2.2 硬件资源
mem = psutil.virtual_memory()
print("\n🔍 资源快照")
print(f"Memory Total   : {mem.total/1024**3:.1f} GB")
print(f"Memory Free    : {mem.available/1024**3:.1f} GB")
print(f"GPU Available  : {torch.cuda.is_available()}")
if torch.cuda.is_available():
    for i in range(torch.cuda.device_count()):
        print(f"  - GPU {i}     : {torch.cuda.get_device_name(i)} "
              f"{torch.cuda.memory_reserved(i)/1024**3:.1f} GB")
 
print("=" * 60)

image

 

 

 进度条 库  

# 清华源
!UV_HTTP_TIMEOUT=300 uv pip install --python .venv/bin/python ipywidgets -i https://pypi.tuna.tsinghua.edu.cn/simple/

image

 

 

 LLM 环境

 

def llm_ready():
    ok = True
    if sys.version_info < (3, 7):
        print("❌ Python 版本过低,建议 ≥3.8")
        ok = False
    if torch.__version__ < "1.10":
        print("⚠️  PyTorch 版本较低,可能影响性能")
    if not torch.cuda.is_available():
        print("⚠️  无 GPU,仅 CPU 推理,速度会慢")
    try:
        from transformers import AutoTokenizer, AutoModel
        print("✅ transformers 可用")
    except ImportError:
        print("❌ 未安装 transformers")
        ok = False
    return ok

print("LLM 环境就绪?" , "✅ 可以跑" if llm_ready() else "❌ 需升级/安装")

image

 

 
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
posted @ 2025-10-15 14:45  aiplus  阅读(13)  评论(0)    收藏  举报
悬浮按钮示例