ipynb中juypter中安装uv虚拟环境
安装 uv 虚拟环境管理# 如果已经装过可跳过 !curl -LsSf https://astral.sh/uv/install.sh | sh
|
|
把 uv写入环境变量import os, sys # 把 uv 所在目录写进 PATH os.environ["PATH"] = f"/home/zmrobo/.local/bin:{os.environ['PATH']}"
|
|
版本 查询import os os.environ["PATH"] = f"/home/zmrobo/.local/bin:{os.environ['PATH']}" !uv --version
|
|
uv 安装 pip ,注册内核
# 1. 用 uv 直接装 pip + ipykernel !uv pip install --python .venv/bin/python pip ipykernel # 2. 注册内核 ! .venv/bin/python -m ipykernel install --user --name=uv-env --display-name "Python (uv-env)"
Resolved 30 packages in 2.27s Prepared 1 package in 9.36s Installed 30 packages in 343ms + asttokens==3.0.0 + comm==0.2.3 + debugpy==1.8.17 + decorator==5.2.1 + executing==2.2.1 + ipykernel==7.0.1 + ipython==9.6.0 + ipython-pygments-lexers==1.1.1 + jedi==0.19.2 + jupyter-client==8.6.3 + jupyter-core==5.8.1 + matplotlib-inline==0.1.7 + nest-asyncio==1.6.0 + packaging==25.0 + parso==0.8.5 + pexpect==4.9.0 + pip==25.2 + platformdirs==4.5.0 + prompt-toolkit==3.0.52 + psutil==7.1.0 + ptyprocess==0.7.0 + pure-eval==0.2.3 + pygments==2.19.2 + python-dateutil==2.9.0.post0 + pyzmq==27.1.0 + six==1.17.0 + stack-data==0.6.3 + tornado==6.5.2 + traitlets==5.14.3 + wcwidth==0.2.14 Installed kernelspec uv-env in /home/zmrobo/.local/share/jupyter/kernels/uv-env
|
|
虚拟环境安装 numpy 包
! .venv/bin/python -m pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
|
|
版本查询
import sys, numpy print(sys.executable) # 应该指向 .../工作目录/.venv/bin/python print(numpy.__version__)
|
|
删除 虚拟环境
!rm -rf /home/zmrobo/Project/test/.venv
|
|
新建虚拟环境
!uv venv /home/zmrobo/Project/test/.venv
|
|
查看灵芯派环境信息
# 1.1 系统 & 硬件 !uname -a # OS / 内核 !lscpu | head -10 # CPU 型号 & 核数 !free -h # 内存 !df -h | grep '/' # 磁盘剩余 !nvidia-smi 2>/dev/null || echo "No GPU" # GPU 型号 / 显存 # 1.2 预装软件版本 !python --version !python3 --version !pip --version !git --version !which gcc && gcc --version # 编译器 # 1.3 网络连通性(可选) !ping -c 2 gitee.com 信息 Linux H2-RCU 4.19.232 #145 SMP Tue Sep 30 16:37:20 CST 2025 aarch64 GNU/Linux Architecture: aarch64 Byte Order: Little Endian CPU(s): 4 On-line CPU(s) list: 0-3 Thread(s) per core: 1 Core(s) per socket: 4 Socket(s): 1 Vendor ID: ARM Model: 0 Model name: Cortex-A55 total used free shared buff/cache available Mem: 1.9Gi 445Mi 197Mi 101Mi 1.3Gi 1.4Gi Swap: 0B 0B 0B /dev/root 14G 13G 1.1G 92% / devtmpfs 977M 8.0K 977M 1% /dev tmpfs 986M 1.5M 984M 1% /dev/shm tmpfs 986M 96M 891M 10% /run tmpfs 5.0M 4.0K 5.0M 1% /run/lock tmpfs 986M 0 986M 0% /sys/fs/cgroup tmpfs 986M 8.0K 986M 1% /tmp /dev/mmcblk0p7 123M 13M 104M 11% /oem /dev/mmcblk0p8 362M 23K 362M 1% /userdata tmpfs 198M 8.0K 198M 1% /run/user/1000 tmpfs 198M 0 198M 0% /run/user/0 No GPU Python 2.7.16 Python 3.7.3 pip 24.0 from /usr/local/lib/python3.7/dist-packages/pip (python 3.7) git version 2.20.1 /usr/bin/gcc gcc (Debian 8.3.0-6) 8.3.0 Copyright (C) 2018 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ping: socket: 不允许的操作
|
|
安装 torch ! .venv/bin/python -m pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
|
|
安装场景的 AI 库!uv pip install --python .venv/bin/python \ transformers accelerate sentencepiece modelscope -i https://mirrors.aliyun.com/pypi/simple/
Resolved 29 packages in 5.01s Prepared 16 packages in 34.31s Installed 16 packages in 467ms + accelerate==1.10.1 + certifi==2025.10.5 + charset-normalizer==3.4.4 + hf-xet==1.1.10 + huggingface-hub==0.35.3 + idna==3.11 + modelscope==1.30.0 + pyyaml==6.0.3 + regex==2025.9.18 + requests==2.32.5 + safetensors==0.6.2 + sentencepiece==0.2.1 + tokenizers==0.22.1 + tqdm==4.67.1 + transformers==4.57.1 + urllib3==2.5.0
|
|
查看 ai 库环境import sys, os, platform, subprocess, importlib.metadata, psutil, torch print("=" * 60) print("🔍 Python 运行环境") print("=" * 60) print("Python:", sys.version) print("Platform:", platform.platform()) print("PWD:", os.getcwd()) print("=" * 60) # 2.1 关键库版本 libs = ["torch", "transformers", "accelerate", "sentencepiece", "modelscope"] for lib in libs: try: ver = pkg_resources.get_distribution(lib).version print(f"{lib:<15} {ver}") except: print(f"{lib:<15} ❌ 未安装") # 2.2 硬件资源 mem = psutil.virtual_memory() print("\n🔍 资源快照") print(f"Memory Total : {mem.total/1024**3:.1f} GB") print(f"Memory Free : {mem.available/1024**3:.1f} GB") print(f"GPU Available : {torch.cuda.is_available()}") if torch.cuda.is_available(): for i in range(torch.cuda.device_count()): print(f" - GPU {i} : {torch.cuda.get_device_name(i)} " f"{torch.cuda.memory_reserved(i)/1024**3:.1f} GB") print("=" * 60)
|
|
进度条 库 # 清华源 !UV_HTTP_TIMEOUT=300 uv pip install --python .venv/bin/python ipywidgets -i https://pypi.tuna.tsinghua.edu.cn/simple/
|
|
LLM 环境
def llm_ready(): ok = True if sys.version_info < (3, 7): print("❌ Python 版本过低,建议 ≥3.8") ok = False if torch.__version__ < "1.10": print("⚠️ PyTorch 版本较低,可能影响性能") if not torch.cuda.is_available(): print("⚠️ 无 GPU,仅 CPU 推理,速度会慢") try: from transformers import AutoTokenizer, AutoModel print("✅ transformers 可用") except ImportError: print("❌ 未安装 transformers") ok = False return ok print("LLM 环境就绪?" , "✅ 可以跑" if llm_ready() else "❌ 需升级/安装")
|
|