摘要:
import numpy as np # 定义系数矩阵A和常数项向量b A = np.array([[2, 3, 1], [1, -2, 4], [3, 8, -2], [4, -1, 9]]) b = np.array([4, -5, 13, -6]) # 使用numpy的lstsq函数求解最小二 阅读全文
posted @ 2024-10-15 19:51
方~~
阅读(10)
评论(0)
推荐(0)
摘要:
import numpy as np # 定义系数矩阵A和常数项向量b A = np.array([[4, 2, -1], [3, -1, 2], [11, 3, 0]]) b = np.array([2, 10, 8]) # 使用numpy的lstsq求解最小二乘解 x, residuals, r 阅读全文
posted @ 2024-10-15 19:49
方~~
阅读(18)
评论(0)
推荐(0)
摘要:
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 模拟高程数据(假设数据已经过某种方式插值或生成) # 这里我们创建一个简单的40x50网格,并填充随机高程值 x 阅读全文
posted @ 2024-10-15 19:48
方~~
阅读(32)
评论(0)
推荐(0)
摘要:
#椭圆抛物面 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 定义参数u和v u = np.linspace(-2, 2, 400) v = np.linspac 阅读全文
posted @ 2024-10-15 19:47
方~~
阅读(15)
评论(0)
推荐(0)
摘要:
import numpy as np #单叶双曲面 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 定义参数u和v u = np.linspace(-2, 2, 400) v = np.linspac 阅读全文
posted @ 2024-10-15 19:46
方~~
阅读(12)
评论(0)
推荐(0)
摘要:
import numpy as np import matplotlib.pyplot as plt # 定义x的范围 x = np.linspace(-10, 10, 400) # 创建一个2行3列的子图布局 fig, axs = plt.subplots(2, 3, figsize=(12, 8 阅读全文
posted @ 2024-10-15 19:45
方~~
阅读(10)
评论(0)
推荐(0)
摘要:
import numpy as np import matplotlib.pyplot as plt # 定义x的范围 x = np.linspace(-10, 10, 400) # 创建一个图形和坐标轴 plt.figure(figsize=(10, 6)) ax = plt.gca() # 循环 阅读全文
posted @ 2024-10-15 19:44
方~~
阅读(9)
评论(0)
推荐(0)
摘要:
import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad def fun(t, x): return np.exp(-t) * (t ** (x - 1)) x = np.linspace( 阅读全文
posted @ 2024-10-15 19:43
方~~
阅读(15)
评论(0)
推荐(0)
摘要:
import numpy as np import matplotlib.pyplot as plt # 定义 x 的范围 x = np.linspace(-5, 5, 400) # 计算三个函数的值 y_cosh = np.cosh(x) y_sinh = np.sinh(x) y_half_ex 阅读全文
posted @ 2024-10-15 19:42
方~~
阅读(18)
评论(0)
推荐(0)
摘要:
from scipy.optimize import fsolve,root fx = lambda x:[x[0]**2+x[1]**2-1,x[0]-x[1]] s1=fsolve(fx,[1,1]) s2=root(fx,[1,1]) print(s1,'\n',' ');print(s2) 阅读全文
posted @ 2024-10-15 18:02
方~~
阅读(17)
评论(0)
推荐(0)