摘要:
import pylab as plt import numpy as np x=np.linspace(-4,4,100); x,y=np.meshgrid(x,x) z=50*np.sin(x+y); ax=plt.axes(projection='3d') ax.plot_surface(x, 阅读全文
posted @ 2024-10-15 20:26
方~~
阅读(9)
评论(0)
推荐(0)
摘要:
import pylab as plt import numpy as np ax=plt.axes(projection='3d') #设置三维图形模式 z=np.linspace(-50, 50, 1000) x=z**2*np.sin(z); y=z**2*np.cos(z) plt.plot 阅读全文
posted @ 2024-10-15 20:25
方~~
阅读(9)
评论(0)
推荐(0)
摘要:
import pylab as plt import numpy as np plt.rc('text', usetex=True) #调用tex字库 y1=np.random.randint(2, 5, 6); y1=y1/sum(y1); plt.subplot(2, 2, 1); str=[' 阅读全文
posted @ 2024-10-15 20:24
方~~
阅读(10)
评论(0)
推荐(0)
摘要:
import pandas as pd import pylab as plt plt.rc('font',family='SimHei') #用来正常显示中文标签 plt.rc('font',size=16) #设置显示字体大小 a=pd.read_excel("data2_52.xlsx",he 阅读全文
posted @ 2024-10-15 20:23
方~~
阅读(9)
评论(0)
推荐(0)
摘要:
import pandas as pd import pylab as plt plt.rc('font',family='SimHei') #用来正常显示中文标签 plt.rc('font',size=16) #设置显示字体大小 a=pd.read_excel("data2_52.xlsx", h 阅读全文
posted @ 2024-10-15 20:22
方~~
阅读(7)
评论(0)
推荐(0)
摘要:
import numpy as np import sympy as sp a = np.identity(4) #单位矩阵的另一种写法 b = np.rot90(a) c = sp.Matrix(b) print('特征值为:', c.eigenvals()) print('特征向量为:\n', 阅读全文
posted @ 2024-10-15 20:21
方~~
阅读(8)
评论(0)
推荐(0)
摘要:
import sympy as sp x = sp.var('x:2') #定义符号数组 s = sp.solve([x[0]**2+x[1]**2-1,x[0]-x[1]], x) print(s) print("学号:3008") 结果如下 阅读全文
posted @ 2024-10-15 20:19
方~~
阅读(19)
评论(0)
推荐(0)
摘要:
import sympy as sp sp.var('x1,x2') s=sp.solve([x1**2+x2**2-1,x1-x2],[x1,x2]) print(s) print("学号:3008") 结果如下 阅读全文
posted @ 2024-10-15 20:18
方~~
阅读(10)
评论(0)
推荐(0)
摘要:
import sympy as sp a, b, c, x=sp.symbols('a,b,c,x') x0=sp.solve(a*x**2+b*x+c, x) print(x0) print("学号:3008") 结果如下: 阅读全文
posted @ 2024-10-15 20:17
方~~
阅读(11)
评论(0)
推荐(0)
摘要:
from scipy.sparse.linalg import eigs import numpy as np a = np.array([[1, 2, 3], [2, 1, 3], [3, 3, 6]], dtype=float) #必须加float,否则出错 b, c = np.linalg.e 阅读全文
posted @ 2024-10-15 20:15
方~~
阅读(8)
评论(0)
推荐(0)