基于MATLAB的栅格环境建模与遗传算法路径规划完整实现
一、环境建模(栅格地图)
%% 环境参数设置
mapSize = [100,100]; % 地图尺寸(100x100)
obsDensity = 0.3; % 障碍物密度30%
safeRadius = 2; % 机器人半径
% 创建栅格地图
envMap = zeros(mapSize);
obsCount = round(obsDensity * numel(envMap)/4); % 障碍物数量
% 生成随机障碍物
obsPositions = randi([1,mapSize(1)],obsCount,2);
for i = 1:obsCount
x = obsPositions(i,1);
y = obsPositions(i,2);
envMap(max(1,x-2):min(mapSize(1),x+2), max(1,y-2):min(mapSize(2),y+2)) = 1;
end
% 可视化
figure;
imagesc(envMap);
colormap([1 1 1; 0 0 0]); % 白色-自由,黑色-障碍
hold on;
plot(1,1,'go','MarkerSize',10,'LineWidth',2); % 起点
plot(mapSize(1),mapSize(2),'ro','MarkerSize',10,'LineWidth',2); % 终点
title('环境建模结果');
axis equal tight;
二、遗传算法核心模块
1. 染色体编码(路径点序列)
function chromosome = encodePath(start,goal,numPoints)
% 生成路径点序列(起点+中间点+终点)
midPoints = randi([2,mapSize(1)-1],numPoints-2,2);
chromosome = [start; midPoints; goal];
end
2. 适应度函数设计
function fitness = calcFitness(chromosome,envMap,safeRadius)
path = chromosome;
penalty = 0;
% 碰撞检测
for i = 1:size(path,1)-1
segment = bresenham(path(i,:),path(i+1,:));
if any(envMap(segment(:,1),segment(:,2)))
penalty = penalty + 1e6; % 碰撞惩罚
end
% 距离惩罚
dist = norm(path(i+1,:) - path(i,:));
penalty = penalty + 1/dist;
end
fitness = 1/(pathLength(path) + penalty);
end
function len = pathLength(path)
len = 0;
for i = 1:size(path,1)-1
len = len + norm(path(i+1,:) - path(i,:));
end
end
3. 遗传操作
%% 选择操作(锦标赛选择)
function selected = tournamentSelection(population,fitness,k)
[~,idx] = sort(fitness,'descend');
candidates = idx(1:k);
selected = population(candidates(1),:);
end
%% 交叉操作(顺序交叉OX)
function child = orderCrossover(parent1,parent2)
n = size(parent1,1);
points = sort(randperm(n,2));
child = zeros(n,2);
% 复制父代1片段
child(points(1):points(2),:) = parent1(points(1):points(2),:);
% 填充剩余基因
ptr = points(2)+1;
for i = 1:n
if ptr > n
ptr = 1;
end
if ~ismember(parent2(i,:),child)
child(ptr,:) = parent2(i,:);
ptr = ptr+1;
end
end
end
%% 变异操作(高斯扰动)
function mutated = mutate(chromosome,sigma)
mutated = chromosome + sigma*randn(size(chromosome));
mutated = max(min(mutated,mapSize),[1,1]);
end
三、路径规划主程序
%% 参数设置
popSize = 100; % 种群大小
maxGen = 500; % 最大迭代
pc = 0.8; % 交叉概率
pm = 0.1; % 变异概率
kTournament = 5; % 锦标赛规模
% 初始化种群
population = zeros(popSize,20); % 假设路径包含18个中间点
for i = 1:popSize
population(i,:) = encodePath([1,1],mapSize,18);
end
% 进化循环
bestFitness = zeros(maxGen,1);
for gen = 1:maxGen
% 计算适应度
fitness = zeros(popSize,1);
for i = 1:popSize
fitness(i) = calcFitness(population(i,:),envMap,safeRadius);
end
% 更新最优解
[bestFit,idx] = max(fitness);
bestFitness(gen) = bestFit;
bestChromosome = population(idx,:);
% 选择
newPop = zeros(popSize,20);
for i = 1:popSize
parent1 = tournamentSelection(population,fitness,kTournament);
parent2 = tournamentSelection(population,fitness,kTournament);
% 交叉
if rand < pc
child = orderCrossover(parent1,parent2);
else
child = parent1;
end
% 变异
if rand < pm
child = mutate(child,2);
end
newPop(i,:) = child;
end
population = newPop;
end
% 路径可视化
figure;
plotPath(bestChromosome,envMap);
title('最优路径规划结果');
参考代码 通过matlab建立环境障碍物模型,通过遗传算法规划一条无碰撞路径,完成路径规划 www.youwenfan.com/contentcnd/65895.html
四、关键算法优化
1. 动态步长调整
% 根据环境复杂度调整种群规模
complexity = sum(envMap(:))/numel(envMap);
popSize = 50 + 50*(1-complexity);
2. 多目标优化
% 适应度函数扩展(路径长度+安全性)
fitness = w1*pathLength(path) + w2*collisionPenalty;
3. 并行计算加速
% 使用parfor加速适应度计算
parfor i = 1:popSize
fitness(i) = calcFitness(population(i,:),envMap,safeRadius);
end
该方法通过改进遗传算法的编码方式和适应度函数,在复杂环境中实现了高效无碰撞路径规划。实际应用中可根据具体需求调整参数,如增加机器人动力学约束或融合传感器数据实现动态避障。

浙公网安备 33010602011771号