基于MFCC特征提取和DTW算法的孤立字词识别
基于MFCC特征提取和DTW算法的孤立字词识别的MATLAB实现代码
1. MFCC特征提取
function mfccs = extractMFCC(signal, fs)
% 提取MFCC特征
% 输入:
% signal - 语音信号
% fs - 采样频率
% 输出:
% mfccs - 提取的MFCC特征
% 预加重
preemph = [1, -0.97];
signal = filter(preemph, 1, signal);
% 分帧
frame_len = 25; % 每帧长度为25ms
frame_shift = 10; % 帧移为10ms
frame_size = round(frame_len * fs / 1000);
frame_shift_size = round(frame_shift * fs / 1000);
frames = buffer(signal, frame_size, frame_size - frame_shift_size, 'nodelay');
% 加窗
window = hamming(frame_size);
frames = bsxfun(@times, frames, window);
% FFT
NFFT = 2^nextpow2(frame_size);
mag_frames = abs(fft(frames, NFFT, 2));
% Mel滤波器组
low_freq = 0;
high_freq = fs / 2;
nfilt = 26;
mel_pts = linspace(hz2mel(low_freq), hz2mel(high_freq), nfilt + 2);
hz_pts = mel2hz(mel_pts);
bin = floor((NFFT + 1) * hz_pts / fs);
filter_bank = zeros(nfilt, floor(NFFT / 2 + 1));
for j = 1:nfilt
for i = bin(j):bin(j + 1)
filter_bank(j, i) = (i - bin(j)) / (bin(j + 1) - bin(j));
end
for i = bin(j + 1):bin(j + 2)
filter_bank(j, i) = (bin(j + 2) - i) / (bin(j + 2) - bin(j + 1));
end
end
% 应用Mel滤波器组
filtered_frames = filter_bank * mag_frames(:, 1:NFFT / 2 + 1)';
% 取对数
log_filtered_frames = log(filtered_frames + eps);
% DCT
num_ceps = 12;
mfccs = dct(log_filtered_frames);
mfccs = mfccs(1:num_ceps, :);
end
function mel = hz2mel(hz)
% Hz转Mel
mel = 2595 * log10(1 + hz / 700);
end
function hz = mel2hz(mel)
% Mel转Hz
hz = 700 * (10 .^ (mel / 2595) - 1);
end
2. DTW算法
function [distance, path] = dtw(signal1, signal2)
% DTW算法
% 输入:
% signal1 - 第一个信号
% signal2 - 第二个信号
% 输出:
% distance - 两个信号之间的DTW距离
% path - 最佳匹配路径
% 计算累积距离矩阵
[rows1, cols1] = size(signal1);
[rows2, cols2] = size(signal2);
cost_matrix = zeros(rows1, rows2);
for i = 1:rows1
for j = 1:rows2
cost_matrix(i, j) = norm(signal1(i, :) - signal2(j, :))^2;
end
end
dtw_matrix = zeros(rows1 + 1, rows2 + 1);
dtw_matrix(2:end, 2:end) = inf;
dtw_matrix(1, 1) = 0;
for i = 2:rows1 + 1
for j = 2:rows2 + 1
cost = cost_matrix(i - 1, j - 1);
last_min = min([dtw_matrix(i - 1, j), dtw_matrix(i, j - 1), dtw_matrix(i - 1, j - 1)]);
dtw_matrix(i, j) = cost + last_min;
end
end
% 回溯找到最佳路径
i = rows1 + 1;
j = rows2 + 1;
path = [];
while i > 1 && j > 1
path = [i - 1, j - 1; path];
[~, idx] = min([dtw_matrix(i - 1, j), dtw_matrix(i, j - 1), dtw_matrix(i - 1, j - 1)]);
if idx == 1
i = i - 1;
elseif idx == 2
j = j - 1;
else
i = i - 1;
j = j - 1;
end
end
distance = dtw_matrix(rows1 + 1, rows2 + 1);
end
3. 孤立字词识别
function isolated_word_recognition()
% 孤立字词识别
% 假设已经提取好了参考模板的MFCC特征并存储在ref_mfccs.mat文件中
load('ref_mfccs.mat'); % 加载参考模板的MFCC特征
% 读取测试语音信号
[test_signal, fs] = audioread('test.wav'); % 替换为你的测试语音文件路径
test_mfccs = extractMFCC(test_signal, fs); % 提取测试语音的MFCC特征
% 初始化最小距离和识别结果
min_distance = inf;
recognized_word = '';
% 遍历参考模板进行匹配
for i = 1:length(ref_mfccs)
[distance, ~] = dtw(test_mfccs', ref_mfccs{i}'); % DTW匹配
if distance < min_distance
min_distance = distance;
recognized_word = words{i}; % 假设words数组存储了参考模板对应的单词
end
end
% 输出识别结果
disp(['识别结果:', recognized_word]);
end
4. 主函数
function main()
% 主函数
isolated_word_recognition();
end
参考代码 基于mfcc和DTW的孤立字词识别源码 www.youwenfan.com/contentcnd/96990.html
说明
- MFCC特征提取:提取语音信号的MFCC特征,包括预加重、分帧、加窗、FFT、Mel滤波器组、取对数和DCT等步骤。
- DTW算法:实现DTW算法,计算两个信号之间的最佳匹配路径和距离。
- 孤立字词识别:加载参考模板的MFCC特征,提取测试语音的MFCC特征,使用DTW算法进行匹配,输出识别结果。
运行主函数main()即可完成孤立字词的识别。请确保将参考模板的MFCC特征存储为ref_mfccs.mat文件,并将测试语音文件路径替换为实际路径。

浙公网安备 33010602011771号