matlab管道泄漏信号处理

管道泄漏信号处理是一个重要的工业应用领域,涉及多种信号处理算法。一个全面的管道泄漏信号处理算法框架:

管道泄漏信号处理总体框架

classdef PipelineLeakDetection
    properties
        fs = 1000;          % 采样频率 (Hz)
        pipe_length = 1000; % 管道长度 (m)
        sound_speed = 343;  % 声速 (m/s)
        leak_position = 300;% 泄漏位置 (m)
    end
    
    methods
        function obj = PipelineLeakDetection(fs, length)
            if nargin > 0
                obj.fs = fs;
                obj.pipe_length = length;
            end
        end
    end
end

1. 信号预处理算法

1.1 降噪滤波

function filtered_signal = preprocess_signal(signal, fs)
    % 带通滤波 - 保留泄漏特征频率
    f_low = 10;   % 低频截止 (Hz)
    f_high = 500; % 高频截止 (Hz)
    
    [b, a] = butter(4, [f_low, f_high]/(fs/2), 'bandpass');
    filtered_signal = filtfilt(b, a, signal);
    
    % 小波降噪
    filtered_signal = wdenoise(filtered_signal, 5, ...
        'Wavelet', 'db4', 'DenoisingMethod', 'SURE');
    
    % 中值滤波去除脉冲噪声
    filtered_signal = medfilt1(filtered_signal, 5);
end

1.2 信号增强

function enhanced_signal = signal_enhancement(signal, fs)
    % 自适应滤波增强泄漏特征
    enhanced_signal = signal;
    
    % 谱减法降噪
    enhanced_signal = spectral_subtraction(enhanced_signal, fs);
    
    % 包络分析
    [env, ~] = envelope(enhanced_signal, 50, 'peak');
    enhanced_signal = enhanced_signal .* env;
end

2. 时域分析方法

2.1 统计特征提取

function features = time_domain_features(signal)
    % 时域统计特征
    features.rms = rms(signal);              % 均方根值
    features.peak = max(abs(signal));        % 峰值
    features.crest = features.peak/features.rms; % 峰值因子
    features.kurtosis = kurtosis(signal);    % 峭度
    features.skewness = skewness(signal);    % 偏度
    features.var = var(signal);              % 方差
    
    % 脉冲指标
    features.impulse_factor = max(abs(signal)) / mean(abs(signal));
    
    % 波形指标
    features.shape_factor = features.rms / mean(abs(signal));
end

2.2 相关性分析

function [delay, correlation] = cross_correlation_analysis(signal1, signal2, fs)
    % 互相关分析确定泄漏位置
    
    [correlation, lags] = xcorr(signal1, signal2, 'coeff');
    [~, max_idx] = max(abs(correlation));
    delay = lags(max_idx) / fs;  % 时间延迟 (秒)
    
    % 绘制互相关函数
    figure;
    plot(lags/fs, correlation);
    xlabel('时间延迟 (s)');
    ylabel('互相关系数');
    title('信号互相关分析');
    grid on;
end

3. 频域分析方法

3.1 功率谱分析

function [freq_features, psd] = frequency_analysis(signal, fs)
    % 功率谱密度分析
    [psd, freq] = pwelch(signal, hamming(512), 256, 1024, fs);
    
    % 频域特征提取
    freq_features.centroid = sum(freq.*psd) / sum(psd);  % 频谱重心
    freq_features.rmsf = sqrt(sum((freq.^2).*psd) / sum(psd)); % 均方根频率
    
    % 频带能量比
    low_band = freq <= 100;
    mid_band = (freq > 100) & (freq <= 300);
    high_band = freq > 300;
    
    freq_features.low_energy_ratio = sum(psd(low_band)) / sum(psd);
    freq_features.mid_energy_ratio = sum(psd(mid_band)) / sum(psd);
    freq_features.high_energy_ratio = sum(psd(high_band)) / sum(psd);
    
    % 绘制频谱图
    figure;
    subplot(2,1,1);
    plot(freq, 10*log10(psd));
    xlabel('频率 (Hz)');
    ylabel('功率谱密度 (dB/Hz)');
    title('功率谱密度分析');
    grid on;
end

3.2 频带特征提取

function band_features = frequency_band_features(signal, fs)
    % 小波包分解 - 多分辨率分析
    level = 4;
    wpt = wpdec(signal, level, 'db4');
    
    % 提取各节点能量
    band_features = [];
    for i = 0:2^level-1
        node_signal = wprcoef(wpt, [level, i]);
        band_features(i+1) = sum(node_signal.^2);
    end
    
    % 能量归一化
    band_features = band_features / sum(band_features);
end

4. 时频分析方法

4.1 短时傅里叶变换

function [stft_mat, f, t] = stft_analysis(signal, fs, window_size)
    % 短时傅里叶变换
    if nargin < 3
        window_size = 256;
    end
    
    window = hamming(window_size);
    noverlap = round(0.75 * window_size);
    nfft = 1024;
    
    [stft_mat, f, t] = spectrogram(signal, window, noverlap, nfft, fs);
    
    % 可视化
    figure;
    imagesc(t, f, 10*log10(abs(stft_mat)));
    axis xy;
    xlabel('时间 (s)');
    ylabel('频率 (Hz)');
    title('STFT时频分析');
    colorbar;
end

4.2 小波变换分析

function [cwt_mat, frequencies] = wavelet_analysis(signal, fs)
    % 连续小波变换
    frequencies = 1:0.5:500;  % 分析频率范围
    cwt_mat = cwt(signal, frequencies, 'amor', fs);
    
    % 小波能量谱
    wavelet_energy = abs(cwt_mat).^2;
    
    % 可视化
    figure;
    imagesc((1:length(signal))/fs, frequencies, 10*log10(wavelet_energy));
    axis xy;
    xlabel('时间 (s)');
    ylabel('尺度');
    title('小波变换时频分析');
    colorbar;
end

5. 泄漏检测与定位算法

5.1 基于负压波的定位

function leak_position = negative_pressure_wave_method(sensor_positions, time_delays, sound_speed)
    % 负压波法泄漏定位
    
    num_sensors = length(sensor_positions);
    
    if num_sensors == 2
        % 双传感器定位
        distance = sensor_positions(2) - sensor_positions(1);
        leak_position = sensor_positions(1) + ...
            (distance + sound_speed * time_delays) / 2;
        
    else
        % 多传感器最小二乘定位
        A = [];
        b = [];
        
        for i = 2:num_sensors
            A(i-1, :) = [2*(sensor_positions(i) - sensor_positions(1)), ...
                         2*sound_speed*(time_delays(i) - time_delays(1))];
            b(i-1) = sensor_positions(i)^2 - sensor_positions(1)^2 + ...
                     (sound_speed*time_delays(1))^2 - (sound_speed*time_delays(i))^2;
        end
        
        x = A \ b';
        leak_position = x(1);
    end
end

5.2 基于声发射的检测

function [is_leak, confidence] = acoustic_emission_detection(signal, fs, threshold)
    % 声发射泄漏检测
    
    % 提取特征
    features = extract_leak_features(signal, fs);
    
    % 综合判断
    energy_score = features.energy > threshold.energy;
    freq_score = features.high_freq_ratio > threshold.freq;
    correlation_score = features.correlation > threshold.corr;
    
    % 置信度计算
    confidence = 0.4 * energy_score + 0.3 * freq_score + 0.3 * correlation_score;
    is_leak = confidence > 0.6;
end

6. 机器学习方法

6.1 特征提取

function feature_vector = extract_comprehensive_features(signal, fs)
    % 综合特征提取
    
    % 时域特征
    time_feat = time_domain_features(signal);
    
    % 频域特征  
    [freq_feat, ~] = frequency_analysis(signal, fs);
    
    % 时频特征
    band_feat = frequency_band_features(signal, fs);
    
    % 组合特征向量
    feature_vector = [...
        time_feat.rms, time_feat.peak, time_feat.kurtosis, ...
        freq_feat.centroid, freq_feat.rmsf, ...
        freq_feat.low_energy_ratio, freq_feat.high_energy_ratio, ...
        band_feat];
end

6.2 SVM分类器

function svm_model = train_leak_classifier(training_data, labels)
    % 训练SVM泄漏分类器
    
    % 特征标准化
    [training_data_scaled, mu, sigma] = zscore(training_data);
    
    % SVM训练
    svm_model = fitcsvm(training_data_scaled, labels, ...
        'KernelFunction', 'rbf', ...
        'BoxConstraint', 1, ...
        'KernelScale', 'auto', ...
        'Standardize', true);
    
    % 保存标准化参数
    svm_model.mu = mu;
    svm_model.sigma = sigma;
end

7. 完整的泄漏检测系统

function leak_detection_system()
    % 完整的管道泄漏检测系统
    
    % 参数设置
    fs = 1000;
    pipe_length = 1000;
    sensor_positions = [100, 500, 900];
    
    % 1. 数据采集
    sensor_data = acquire_sensor_data(sensor_positions);
    
    % 2. 信号预处理
    processed_signals = cell(size(sensor_data));
    for i = 1:length(sensor_data)
        processed_signals{i} = preprocess_signal(sensor_data{i}, fs);
    end
    
    % 3. 特征提取
    features = [];
    for i = 1:length(processed_signals)
        feat = extract_comprehensive_features(processed_signals{i}, fs);
        features = [features; feat];
    end
    
    % 4. 泄漏检测
    [is_leak, confidence] = detect_leakage(features);
    
    if is_leak
        % 5. 泄漏定位
        time_delays = estimate_time_delays(processed_signals, fs);
        leak_position = locate_leak(sensor_positions, time_delays);
        
        fprintf('检测到泄漏!位置: %.2f米, 置信度: %.2f\n', ...
            leak_position, confidence);
    else
        fprintf('系统正常,未检测到泄漏\n');
    end
    
    % 6. 可视化结果
    plot_detection_results(processed_signals, features, is_leak, leak_position);
end

参考代码 关于管道泄漏信号处理的算法 www.youwenfan.com/contentcno/81289.html

关键算法总结

方法类型 主要算法 适用场景 优点
时域分析 统计特征、相关性分析 快速检测、初步定位 计算简单、实时性好
频域分析 功率谱分析、频带能量 特征提取、模式识别 抗噪性强、特征明显
时频分析 STFT、小波变换 非平稳信号分析 时间-频率联合分析
定位算法 负压波法、声发射法 精确定位 定位精度高
智能诊断 SVM、神经网络 复杂工况、智能诊断 自适应强、准确率高
posted @ 2025-12-23 16:06  躲雨小伙  阅读(11)  评论(0)    收藏  举报