matlab管道泄漏信号处理
管道泄漏信号处理是一个重要的工业应用领域,涉及多种信号处理算法。一个全面的管道泄漏信号处理算法框架:
管道泄漏信号处理总体框架
classdef PipelineLeakDetection
properties
fs = 1000; % 采样频率 (Hz)
pipe_length = 1000; % 管道长度 (m)
sound_speed = 343; % 声速 (m/s)
leak_position = 300;% 泄漏位置 (m)
end
methods
function obj = PipelineLeakDetection(fs, length)
if nargin > 0
obj.fs = fs;
obj.pipe_length = length;
end
end
end
end
1. 信号预处理算法
1.1 降噪滤波
function filtered_signal = preprocess_signal(signal, fs)
% 带通滤波 - 保留泄漏特征频率
f_low = 10; % 低频截止 (Hz)
f_high = 500; % 高频截止 (Hz)
[b, a] = butter(4, [f_low, f_high]/(fs/2), 'bandpass');
filtered_signal = filtfilt(b, a, signal);
% 小波降噪
filtered_signal = wdenoise(filtered_signal, 5, ...
'Wavelet', 'db4', 'DenoisingMethod', 'SURE');
% 中值滤波去除脉冲噪声
filtered_signal = medfilt1(filtered_signal, 5);
end
1.2 信号增强
function enhanced_signal = signal_enhancement(signal, fs)
% 自适应滤波增强泄漏特征
enhanced_signal = signal;
% 谱减法降噪
enhanced_signal = spectral_subtraction(enhanced_signal, fs);
% 包络分析
[env, ~] = envelope(enhanced_signal, 50, 'peak');
enhanced_signal = enhanced_signal .* env;
end
2. 时域分析方法
2.1 统计特征提取
function features = time_domain_features(signal)
% 时域统计特征
features.rms = rms(signal); % 均方根值
features.peak = max(abs(signal)); % 峰值
features.crest = features.peak/features.rms; % 峰值因子
features.kurtosis = kurtosis(signal); % 峭度
features.skewness = skewness(signal); % 偏度
features.var = var(signal); % 方差
% 脉冲指标
features.impulse_factor = max(abs(signal)) / mean(abs(signal));
% 波形指标
features.shape_factor = features.rms / mean(abs(signal));
end
2.2 相关性分析
function [delay, correlation] = cross_correlation_analysis(signal1, signal2, fs)
% 互相关分析确定泄漏位置
[correlation, lags] = xcorr(signal1, signal2, 'coeff');
[~, max_idx] = max(abs(correlation));
delay = lags(max_idx) / fs; % 时间延迟 (秒)
% 绘制互相关函数
figure;
plot(lags/fs, correlation);
xlabel('时间延迟 (s)');
ylabel('互相关系数');
title('信号互相关分析');
grid on;
end
3. 频域分析方法
3.1 功率谱分析
function [freq_features, psd] = frequency_analysis(signal, fs)
% 功率谱密度分析
[psd, freq] = pwelch(signal, hamming(512), 256, 1024, fs);
% 频域特征提取
freq_features.centroid = sum(freq.*psd) / sum(psd); % 频谱重心
freq_features.rmsf = sqrt(sum((freq.^2).*psd) / sum(psd)); % 均方根频率
% 频带能量比
low_band = freq <= 100;
mid_band = (freq > 100) & (freq <= 300);
high_band = freq > 300;
freq_features.low_energy_ratio = sum(psd(low_band)) / sum(psd);
freq_features.mid_energy_ratio = sum(psd(mid_band)) / sum(psd);
freq_features.high_energy_ratio = sum(psd(high_band)) / sum(psd);
% 绘制频谱图
figure;
subplot(2,1,1);
plot(freq, 10*log10(psd));
xlabel('频率 (Hz)');
ylabel('功率谱密度 (dB/Hz)');
title('功率谱密度分析');
grid on;
end
3.2 频带特征提取
function band_features = frequency_band_features(signal, fs)
% 小波包分解 - 多分辨率分析
level = 4;
wpt = wpdec(signal, level, 'db4');
% 提取各节点能量
band_features = [];
for i = 0:2^level-1
node_signal = wprcoef(wpt, [level, i]);
band_features(i+1) = sum(node_signal.^2);
end
% 能量归一化
band_features = band_features / sum(band_features);
end
4. 时频分析方法
4.1 短时傅里叶变换
function [stft_mat, f, t] = stft_analysis(signal, fs, window_size)
% 短时傅里叶变换
if nargin < 3
window_size = 256;
end
window = hamming(window_size);
noverlap = round(0.75 * window_size);
nfft = 1024;
[stft_mat, f, t] = spectrogram(signal, window, noverlap, nfft, fs);
% 可视化
figure;
imagesc(t, f, 10*log10(abs(stft_mat)));
axis xy;
xlabel('时间 (s)');
ylabel('频率 (Hz)');
title('STFT时频分析');
colorbar;
end
4.2 小波变换分析
function [cwt_mat, frequencies] = wavelet_analysis(signal, fs)
% 连续小波变换
frequencies = 1:0.5:500; % 分析频率范围
cwt_mat = cwt(signal, frequencies, 'amor', fs);
% 小波能量谱
wavelet_energy = abs(cwt_mat).^2;
% 可视化
figure;
imagesc((1:length(signal))/fs, frequencies, 10*log10(wavelet_energy));
axis xy;
xlabel('时间 (s)');
ylabel('尺度');
title('小波变换时频分析');
colorbar;
end
5. 泄漏检测与定位算法
5.1 基于负压波的定位
function leak_position = negative_pressure_wave_method(sensor_positions, time_delays, sound_speed)
% 负压波法泄漏定位
num_sensors = length(sensor_positions);
if num_sensors == 2
% 双传感器定位
distance = sensor_positions(2) - sensor_positions(1);
leak_position = sensor_positions(1) + ...
(distance + sound_speed * time_delays) / 2;
else
% 多传感器最小二乘定位
A = [];
b = [];
for i = 2:num_sensors
A(i-1, :) = [2*(sensor_positions(i) - sensor_positions(1)), ...
2*sound_speed*(time_delays(i) - time_delays(1))];
b(i-1) = sensor_positions(i)^2 - sensor_positions(1)^2 + ...
(sound_speed*time_delays(1))^2 - (sound_speed*time_delays(i))^2;
end
x = A \ b';
leak_position = x(1);
end
end
5.2 基于声发射的检测
function [is_leak, confidence] = acoustic_emission_detection(signal, fs, threshold)
% 声发射泄漏检测
% 提取特征
features = extract_leak_features(signal, fs);
% 综合判断
energy_score = features.energy > threshold.energy;
freq_score = features.high_freq_ratio > threshold.freq;
correlation_score = features.correlation > threshold.corr;
% 置信度计算
confidence = 0.4 * energy_score + 0.3 * freq_score + 0.3 * correlation_score;
is_leak = confidence > 0.6;
end
6. 机器学习方法
6.1 特征提取
function feature_vector = extract_comprehensive_features(signal, fs)
% 综合特征提取
% 时域特征
time_feat = time_domain_features(signal);
% 频域特征
[freq_feat, ~] = frequency_analysis(signal, fs);
% 时频特征
band_feat = frequency_band_features(signal, fs);
% 组合特征向量
feature_vector = [...
time_feat.rms, time_feat.peak, time_feat.kurtosis, ...
freq_feat.centroid, freq_feat.rmsf, ...
freq_feat.low_energy_ratio, freq_feat.high_energy_ratio, ...
band_feat];
end
6.2 SVM分类器
function svm_model = train_leak_classifier(training_data, labels)
% 训练SVM泄漏分类器
% 特征标准化
[training_data_scaled, mu, sigma] = zscore(training_data);
% SVM训练
svm_model = fitcsvm(training_data_scaled, labels, ...
'KernelFunction', 'rbf', ...
'BoxConstraint', 1, ...
'KernelScale', 'auto', ...
'Standardize', true);
% 保存标准化参数
svm_model.mu = mu;
svm_model.sigma = sigma;
end
7. 完整的泄漏检测系统
function leak_detection_system()
% 完整的管道泄漏检测系统
% 参数设置
fs = 1000;
pipe_length = 1000;
sensor_positions = [100, 500, 900];
% 1. 数据采集
sensor_data = acquire_sensor_data(sensor_positions);
% 2. 信号预处理
processed_signals = cell(size(sensor_data));
for i = 1:length(sensor_data)
processed_signals{i} = preprocess_signal(sensor_data{i}, fs);
end
% 3. 特征提取
features = [];
for i = 1:length(processed_signals)
feat = extract_comprehensive_features(processed_signals{i}, fs);
features = [features; feat];
end
% 4. 泄漏检测
[is_leak, confidence] = detect_leakage(features);
if is_leak
% 5. 泄漏定位
time_delays = estimate_time_delays(processed_signals, fs);
leak_position = locate_leak(sensor_positions, time_delays);
fprintf('检测到泄漏!位置: %.2f米, 置信度: %.2f\n', ...
leak_position, confidence);
else
fprintf('系统正常,未检测到泄漏\n');
end
% 6. 可视化结果
plot_detection_results(processed_signals, features, is_leak, leak_position);
end
参考代码 关于管道泄漏信号处理的算法 www.youwenfan.com/contentcno/81289.html
关键算法总结
| 方法类型 | 主要算法 | 适用场景 | 优点 |
|---|---|---|---|
| 时域分析 | 统计特征、相关性分析 | 快速检测、初步定位 | 计算简单、实时性好 |
| 频域分析 | 功率谱分析、频带能量 | 特征提取、模式识别 | 抗噪性强、特征明显 |
| 时频分析 | STFT、小波变换 | 非平稳信号分析 | 时间-频率联合分析 |
| 定位算法 | 负压波法、声发射法 | 精确定位 | 定位精度高 |
| 智能诊断 | SVM、神经网络 | 复杂工况、智能诊断 | 自适应强、准确率高 |

浙公网安备 33010602011771号