基于MATLAB的DTW孤立词识别实现
基于MATLAB的DTW孤立词识别实现,包含语音处理、特征提取、模板匹配及GUI设计等核心模块:
一、系统架构设计

二、核心模块实现
1. 语音预处理
%% 预加重滤波
pre_emph = [1 -0.9375]; % 一阶高通滤波器
x = filter(pre_emph, 1, raw_signal);
%% 分帧加窗
frame_len = 240; % 帧长240ms (8kHz采样率)
frame_inc = 80; % 帧移80ms
frames = enframe(x, frame_len, frame_inc);
ham_win = hamming(frame_len);
frames = frames .* ham_win;
%% 端点检测(双门限法)
[energy, zcr] = endpoint_detection(frames);
start_idx = find(energy > energy_thr & zcr > zcr_thr);
end_idx = find(energy < energy_thr & zcr < zcr_thr);
clean_frames = frames(start_idx:end_idx-1,:);
2. MFCC特征提取
function mfcc_feat = extract_mfcc(frames, fs)
% 参数设置
num_ceps = 12; % 倒谱系数数量
num_filt = 24; % Mel滤波器数量
fft_len = 512; % FFT长度
% 预加重
x = filter([1 -0.9375],1,frames);
% 计算功率谱
power_spectrum = abs(fft(x, fft_len)).^2;
% Mel滤波器组
mel_bank = melbankm(num_filt, fft_len, fs, 0, 0.5);
% 滤波器组应用
filtered = power_spectrum * mel_bank';
% DCT变换
mfcc_feat = dct(log(filtered));
% 一阶差分
delta_feat = diff(mfcc_feat, 1, 2);
delta_delta_feat = diff(mfcc_feat, 2, 2);
% 合并特征
mfcc_feat = [mfcc_feat(:,2:end-1), delta_feat, delta_delta_feat];
end
3. DTW算法实现
function [dist, path] = dtw(query, ref)
% 动态时间规整算法
[n,m] = size(query,1), size(ref,1);
D = inf(n,m);
D(1,1) = 0;
% 计算距离矩阵
for i=2:n
for j=2:m
cost = norm(query(i,:) - ref(j,:));
D(i,j) = cost + min([D(i-1,j), D(i,j-1), D(i-1,j-1)]);
end
end
% 回溯路径
[dist, path] = backtrack(D);
end
function [min_dist, path] = backtrack(D)
[n,m] = size(D);
path = [];
min_dist = D(n,m);
i = n; j = m;
while i > 1 || j > 1
path = [i,j; path];
[~, idx] = min([D(i-1,j), D(i,j-1), D(i-1,j-1)]);
switch idx
case 1: i=i-1;
case 2: j=j-1;
case 3: i=i-1; j=j-1;
end
end
path = [1,1; flipud(path)];
end
三、完整系统实现流程
1. 语音数据库构建
%% 录制模板语音
fs = 8000; % 采样率
template_dir = 'templates/';
for word = 1:10
record_file = sprintf('%s%d.wav', template_dir, word);
record_speech(record_file, fs); % 自定义录音函数
end
2. 模板特征库生成
template_feats = struct();
for word = 1:10
[y,fs] = audioread(sprintf('templates/%d.wav', word));
frames = enframe(y, 240, 80);
mfcc_feat = extract_mfcc(frames, fs);
template_feats{word} = mean(mfcc_feat,1); % 模板平均
end
3. 实时识别模块
%% 语音输入
recorder = audiorecorder(8000,16,1);
recordblocking(recorder, 2); % 录制2秒语音
test_signal = recorder.AudioData;
%% 特征提取
test_frames = enframe(test_signal, 240, 80);
test_mfcc = extract_mfcc(test_frames, 8000);
%% DTW匹配
min_dist = inf;
best_match = 0;
for word = 1:10
ref_feat = template_feats{word};
[dist, ~] = dtw(test_mfcc, ref_feat);
if dist < min_dist
min_dist = dist;
best_match = word;
end
end
%% 结果显示
fprintf('识别结果:%d (距离:%.2f)\n', best_match, min_dist);
四、GUI界面设计(使用GUIDE)
%% 创建GUI组件
fig = uifigure('Name','DTW语音识别系统');
btn_record = uibutton(fig, 'Text','开始录音',...
'Position',[50 300 100 30], 'ButtonPushedFcn', @(btn,event) start_recording());
btn_recognize = uibutton(fig, 'Text','开始识别',...
'Position',[200 300 100 30], 'ButtonPushedFcn', @(btn,event) do_recognition());
ax_wave = uiaxes(fig, 'Position',[0.1 0.3 0.8 0.6]);
xlabel(ax_wave,'时间(s)'); ylabel('幅值');
%% 录音回调函数
function start_recording()
global recorder;
recorder = audiorecorder(8000,16,1);
recordblocking(recorder, 2);
plot(recorder.Time, recorder.AudioData);
end
%% 识别回调函数
function do_recognition()
global recorder;
test_signal = recorder.AudioData;
% 调用识别流程...
end
参考代码 用Matlab实现DTW孤立词识别 www.youwenfan.com/contentcnn/78958.html
五、性能优化
-
特征降维:使用PCA压缩MFCC维度(保留95%方差)
[coeff, score] = pca(template_feats{1}'); reduced_feat = score(:,1:6); % 保留前6个主成分 -
加速技巧: 使用快速DTW算法(
dtw_fast函数) 限制搜索范围(设置最大时间规整因子) -
抗噪处理:
% 添加维纳滤波 denoised = wdenoise(test_signal, 4);
该方法通过MFCC特征提取和DTW匹配实现了高精度的孤立词识别,实际应用中建议结合深度学习方法(如CNN+BiLSTM)进一步提升性能。

浙公网安备 33010602011771号