opengl 学习 之 03 lesson

简介

使用MVP变换来观察生成的三角形

link

http://www.opengl-tutorial.org/uncategorized/2017/06/07/website-update/

向量介绍

We will now have (x,y,z,w) vectors.

If w == 1, then the vector (x,y,z,1) is a position in space.

If w == 0, then the vector (x,y,z,0) is a direction.

变换矩阵(Translation matrices)

In 3D graphics we will mostly use 4x4 matrices. They will allow us to transform our (x,y,z,w) vertices. This is done by multiplying the vertex with the matrix :

\[\left[\begin{array}{llll} 1 & 0 & 0 & X \\ 0 & 1 & 0 & Y \\ 0 & 0 & 1 & Z \\ 0 & 0 & 0 & 1 \end{array}\right] \]

Example

So if we want to translate the vector (10,10,10,1) of 10 units in the X direction, we get :

\[\left[\begin{array}{cccc} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] *\left[\begin{array}{c} 10 \\ 10 \\ 10 \\ 1 \end{array}\right]=\left[\begin{array}{c} 1 * 10+0 * 10+0 * 10+10 * 1 \\ 0 * 10+1 * 10+0 * 10+0 * 1 \\ 0 * 10+0 * 10+1 * 10+0 * 1 \\ 0 * 10+0 * 10+0 * 10+1 * 1 \end{array}\right]=\left[\begin{array}{c} 10+0+0+10 \\ 0+10+0+0 \\ 0+0+10+0 \\ 0+0+0+1 \end{array}\right]=\left[\begin{array}{c} 20 \\ 10 \\ 10 \\ 1 \end{array}\right] \]

Let’s now see what happens to a vector that represents a direction towards the -z axis : (0,0,-1,0)

\[\left[\begin{array}{cccc} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] *\left[\begin{array}{c} 0 \\ 0 \\ -1 \\ 0 \end{array}\right]=\left[\begin{array}{ccccccc} 1 * 0 & + & 0 * 0 & + & 0 * 0 & + & 10 * 0 \\ 0 * 0 & + & 1 * 0 & + & 0 * 0 & + & 0 * 0 \\ 0 *-1 & + & 0 *-1 & + & 1 *-1 & + & 0 *-1 \\ 0 * 0 & + & 0 * 0 & + & 0 * 0 & + & 1 * 0 \end{array}\right]=\left[\begin{array}{c} 0+0+0+0 \\ 0+0+0+0 \\ 0+0+-1+0 \\ 0+0+0+0 \end{array}\right]=\left[\begin{array}{c} 0 \\ 0 \\ -1 \\ 0 \end{array}\right] \]

单位阵(Identity matrix)

\[\left[\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \times\left[\begin{array}{l} x \\ y \\ z \\ w \end{array}\right]=\left[\begin{array}{l} 1 * x+0 * y+0 * z+0 * w \\ 0 * x+1 * y+0 * z+0 * w \\ 0 * x+0 * y+1 * z+0 * w \\ 0 * x+0 * y+0 * z+1 * w \end{array}\right]=\left[\begin{array}{l} x+0+0+0 \\ 0+y+0+0 \\ 0+0+z+0 \\ 0+0+0+w \end{array}\right]=\left[\begin{array}{c} x \\ y \\ z \\ w \end{array}\right] \]

单位阵啥也不干

缩放矩阵(Scaling matrices)

\[\left[\begin{array}{llll} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \]

So if you want to scale a vector (position or direction, it doesn’t matter) by 2.0 in all directions :

\[\left[\begin{array}{llll} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \times\left[\begin{array}{l} x \\ y \\ z \\ w \end{array}\right]=\left[\begin{array}{l} 2 * x+0 * y+0 * z+0 * w \\ 0 * x+2 * y+0 * z+0 * w \\ 0 * x+0 * y+2 * z+0 * w \\ 0 * x+0 * y+0 * z+1 * w \end{array}\right]=\left[\begin{array}{c} 2 * x+0+0+0 \\ 0+2 * y+0+0 \\ 0+0+2 * z+0 \\ 0+0+0+1 * w \end{array}\right]=\left[\begin{array}{c} 2 * x \\ 2 * y \\ 2 * z \\ w \end{array}\right] \]

合并作用

\[TransformedVector = TranslationMatrix * RotationMatrix * ScaleMatrix * OriginalVector \]

作用顺序是,首先缩放,在旋转,在移动。

The Model Matrix (模型矩阵)

You apply this matrix to all your vertices at each frame (in GLSL, not in C++!) and everything moves. Something that doesn’t move will be at the center of the world.

应该就是 上面的 缩放、移动和旋转的集合就是模型矩阵。

模型的坐标通过模型矩阵变化到世界坐标系

The View matrix(视图矩阵)

功能类似于摄像机。

世界坐标系通过视图举证变换到摄像机坐标。

glm::mat4 CameraMatrix = glm::lookAt(
 cameraPosition, // the position of your camera, in world space
 cameraTarget, // where you want to look at, in world space
 upVector // probably glm::vec3(0,1,0), but (0,-1,0) would make you looking upside-down, which
can be great too
);

The Projection matrix(投影矩阵)

如何放在电脑屏幕上显示,通过一个梯形体,类似于埃及金字塔削去了顶部一个四面体。

// Generates a really hard-to-read matrix, but a normal, standard 4x4 matrix nonetheless
glm::mat4 projectionMatrix = glm::perspective(
 FoV, // The horizontal Field of View, in degrees : the amount of "zoom". Think "camera lens".
Usually between 90° (extra wide) and 30° (quite zoomed in)
 4.0f / 3.0f, // Aspect Ratio. Depends on the size of your window. Notice that 4/3 == 800/600 ==
1280/960, sounds familiar ?
 0.1f, // Near clipping plane. Keep as big as possible, or you'll get precision issues.
 100.0f // Far clipping plane. Keep as little as possible.
);

上图即为流程图。

累计变换:MVP(ModelViewProjection)

// C++ : compute the matrix
glm::mat4 MVPmatrix = projection * view * model; // Remember : inverted !

image

code

// Include standard headers
#include <stdio.h>
#include <stdlib.h>

// Include GLEW
#include <GL/glew.h>

// Include GLFW
#include <GLFW/glfw3.h>
GLFWwindow* window;

// Include GLM
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
using namespace glm;

#include <common/shader.hpp>

int main( void )
{
	// Initialise GLFW
	if( !glfwInit() )
	{
		fprintf( stderr, "Failed to initialize GLFW\n" );
		getchar();
		return -1;
	}

	glfwWindowHint(GLFW_SAMPLES, 4);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); //We don't want the old OpenGL 

	// Open a window and create its OpenGL context
	window = glfwCreateWindow( 1024, 768, "Tutorial 03 - Matrices", NULL, NULL);
	if( window == NULL ){
		fprintf( stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n" );
		getchar();
		glfwTerminate();
		return -1;
	}
	glfwMakeContextCurrent(window);

	// Initialize GLEW
	glewExperimental = true; // Needed for core profile
	if (glewInit() != GLEW_OK) {
		fprintf(stderr, "Failed to initialize GLEW\n");
		getchar();
		glfwTerminate();
		return -1;
	}

	// Ensure we can capture the escape key being pressed below
	glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);

	// Dark blue background
	glClearColor(0.0f, 0.0f, 0.4f, 0.0f);

	GLuint VertexArrayID;
	glGenVertexArrays(1, &VertexArrayID);
	glBindVertexArray(VertexArrayID);

	// Create and compile our GLSL program from the shaders
	GLuint programID = LoadShaders( "SimpleTransform.vertexshader", "SingleColor.fragmentshader" );

	// Get a handle for our "MVP" uniform
	GLuint MatrixID = glGetUniformLocation(programID, "MVP");

	// Projection matrix : 45� Field of View, 4:3 ratio, display range : 0.1 unit <-> 100 units
	glm::mat4 Projection = glm::perspective(glm::radians(45.0f), 4.0f / 3.0f, 0.1f, 100.0f);
	// Or, for an ortho camera :
	//glm::mat4 Projection = glm::ortho(-10.0f,10.0f,-10.0f,10.0f,0.0f,100.0f); // In world coordinates
	
	// Camera matrix
	glm::mat4 View       = glm::lookAt(
								glm::vec3(4,3,3), // Camera is at (4,3,3), in World Space
								glm::vec3(0,0,0), // and looks at the origin
								glm::vec3(0,1,0)  // Head is up (set to 0,-1,0 to look upside-down)
						   );
	// Model matrix : an identity matrix (model will be at the origin)
	glm::mat4 Model      = glm::mat4(1.0f);
	// Our ModelViewProjection : multiplication of our 3 matrices
	glm::mat4 MVP        = Projection * View * Model; // Remember, matrix multiplication is the other way around

	static const GLfloat g_vertex_buffer_data[] = { 
		-1.0f, -1.0f, 0.0f,
		 1.0f, -1.0f, 0.0f,
		 0.0f,  1.0f, 0.0f,
	};

	GLuint vertexbuffer;
	glGenBuffers(1, &vertexbuffer);
	glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
	glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW);

	do{

		// Clear the screen
		glClear( GL_COLOR_BUFFER_BIT );

		// Use our shader
		glUseProgram(programID);

		// Send our transformation to the currently bound shader, 
		// in the "MVP" uniform
		glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);

		// 1rst attribute buffer : vertices
		glEnableVertexAttribArray(0);
		glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
		glVertexAttribPointer(
			0,                  // attribute. No particular reason for 0, but must match the layout in the shader.
			3,                  // size
			GL_FLOAT,           // type
			GL_FALSE,           // normalized?
			0,                  // stride
			(void*)0            // array buffer offset
		);

		// Draw the triangle !
		glDrawArrays(GL_TRIANGLES, 0, 3); // 3 indices starting at 0 -> 1 triangle

		glDisableVertexAttribArray(0);

		// Swap buffers
		glfwSwapBuffers(window);
		glfwPollEvents();

	} // Check if the ESC key was pressed or the window was closed
	while( glfwGetKey(window, GLFW_KEY_ESCAPE ) != GLFW_PRESS &&
		   glfwWindowShouldClose(window) == 0 );

	// Cleanup VBO and shader
	glDeleteBuffers(1, &vertexbuffer);
	glDeleteProgram(programID);
	glDeleteVertexArrays(1, &VertexArrayID);

	// Close OpenGL window and terminate GLFW
	glfwTerminate();

	return 0;
}
#version 330 core

// Output data
out vec3 color;

void main()
{

	// Output color = red 
	color = vec3(1,0,0);

}

#version 330 core

// Output data
out vec3 color;

void main()
{

	// Output color = red 
	color = vec3(1,0,0);

}

#version 330 core

// Input vertex data, different for all executions of this shader.
layout(location = 0) in vec3 vertexPosition_modelspace;

// Values that stay constant for the whole mesh.
uniform mat4 MVP;

void main(){
	// Output position of the vertex, in clip space : MVP * position
	gl_Position =  MVP * vec4(vertexPosition_modelspace,1);
}

shader 加载函数

#include <stdio.h>
#include <string>
#include <vector>
#include <iostream>
#include <fstream>
#include <algorithm>
#include <sstream>
using namespace std;

#include <stdlib.h>
#include <string.h>

#include <GL/glew.h>

#include "shader.hpp"

GLuint LoadShaders(const char * vertex_file_path,const char * fragment_file_path){

	// Create the shaders
	GLuint VertexShaderID = glCreateShader(GL_VERTEX_SHADER);
	GLuint FragmentShaderID = glCreateShader(GL_FRAGMENT_SHADER);

	// Read the Vertex Shader code from the file
	std::string VertexShaderCode;
	std::ifstream VertexShaderStream(vertex_file_path, std::ios::in);
	if(VertexShaderStream.is_open()){
		std::stringstream sstr;
		sstr << VertexShaderStream.rdbuf();
		VertexShaderCode = sstr.str();
		VertexShaderStream.close();
	}else{
		printf("Impossible to open %s. Are you in the right directory ? Don't forget to read the FAQ !\n", vertex_file_path);
		getchar();
		return 0;
	}

	// Read the Fragment Shader code from the file
	std::string FragmentShaderCode;
	std::ifstream FragmentShaderStream(fragment_file_path, std::ios::in);
	if(FragmentShaderStream.is_open()){
		std::stringstream sstr;
		sstr << FragmentShaderStream.rdbuf();
		FragmentShaderCode = sstr.str();
		FragmentShaderStream.close();
	}

	GLint Result = GL_FALSE;
	int InfoLogLength;


	// Compile Vertex Shader
	printf("Compiling shader : %s\n", vertex_file_path);
	char const * VertexSourcePointer = VertexShaderCode.c_str();
	glShaderSource(VertexShaderID, 1, &VertexSourcePointer , NULL);
	glCompileShader(VertexShaderID);

	// Check Vertex Shader
	glGetShaderiv(VertexShaderID, GL_COMPILE_STATUS, &Result);
	glGetShaderiv(VertexShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
	if ( InfoLogLength > 0 ){
		std::vector<char> VertexShaderErrorMessage(InfoLogLength+1);
		glGetShaderInfoLog(VertexShaderID, InfoLogLength, NULL, &VertexShaderErrorMessage[0]);
		printf("%s\n", &VertexShaderErrorMessage[0]);
	}



	// Compile Fragment Shader
	printf("Compiling shader : %s\n", fragment_file_path);
	char const * FragmentSourcePointer = FragmentShaderCode.c_str();
	glShaderSource(FragmentShaderID, 1, &FragmentSourcePointer , NULL);
	glCompileShader(FragmentShaderID);

	// Check Fragment Shader
	glGetShaderiv(FragmentShaderID, GL_COMPILE_STATUS, &Result);
	glGetShaderiv(FragmentShaderID, GL_INFO_LOG_LENGTH, &InfoLogLength);
	if ( InfoLogLength > 0 ){
		std::vector<char> FragmentShaderErrorMessage(InfoLogLength+1);
		glGetShaderInfoLog(FragmentShaderID, InfoLogLength, NULL, &FragmentShaderErrorMessage[0]);
		printf("%s\n", &FragmentShaderErrorMessage[0]);
	}



	// Link the program
	printf("Linking program\n");
	GLuint ProgramID = glCreateProgram();
	glAttachShader(ProgramID, VertexShaderID);
	glAttachShader(ProgramID, FragmentShaderID);
	glLinkProgram(ProgramID);

	// Check the program
	glGetProgramiv(ProgramID, GL_LINK_STATUS, &Result);
	glGetProgramiv(ProgramID, GL_INFO_LOG_LENGTH, &InfoLogLength);
	if ( InfoLogLength > 0 ){
		std::vector<char> ProgramErrorMessage(InfoLogLength+1);
		glGetProgramInfoLog(ProgramID, InfoLogLength, NULL, &ProgramErrorMessage[0]);
		printf("%s\n", &ProgramErrorMessage[0]);
	}

	
	glDetachShader(ProgramID, VertexShaderID);
	glDetachShader(ProgramID, FragmentShaderID);
	
	glDeleteShader(VertexShaderID);
	glDeleteShader(FragmentShaderID);

	return ProgramID;
}



#ifndef SHADER_HPP
#define SHADER_HPP

GLuint LoadShaders(const char * vertex_file_path,const char * fragment_file_path);

#endif

posted on 2020-11-30 20:13  HDU李少帅  阅读(101)  评论(0)    收藏  举报